Towards Accurate and Efficient Sub-8-Bit Integer Training
- URL: http://arxiv.org/abs/2411.10948v1
- Date: Sun, 17 Nov 2024 03:32:36 GMT
- Title: Towards Accurate and Efficient Sub-8-Bit Integer Training
- Authors: Wenjin Guo, Donglai Liu, Weiying Xie, Yunsong Li, Xuefei Ning, Zihan Meng, Shulin Zeng, Jie Lei, Zhenman Fang, Yu Wang,
- Abstract summary: Quantization enables low-bitwidth formats in neural network training.
Recent methods have developed new data formats and additional pre-processing operations on quantizers.
It remains quite challenging to achieve high accuracy and efficiency simultaneously.
- Score: 24.853958178296587
- License:
- Abstract: Neural network training is a memory- and compute-intensive task. Quantization, which enables low-bitwidth formats in training, can significantly mitigate the workload. To reduce quantization error, recent methods have developed new data formats and additional pre-processing operations on quantizers. However, it remains quite challenging to achieve high accuracy and efficiency simultaneously. In this paper, we explore sub-8-bit integer training from its essence of gradient descent optimization. Our integer training framework includes two components: ShiftQuant to realize accurate gradient estimation, and L1 normalization to smoothen the loss landscape. ShiftQuant attains performance that approaches the theoretical upper bound of group quantization. Furthermore, it liberates group quantization from inefficient memory rearrangement. The L1 normalization facilitates the implementation of fully quantized normalization layers with impressive convergence accuracy. Our method frees sub-8-bit integer training from pre-processing and supports general devices. This framework achieves negligible accuracy loss across various neural networks and tasks ($0.92\%$ on 4-bit ResNets, $0.61\%$ on 6-bit Transformers). The prototypical implementation of ShiftQuant achieves more than $1.85\times/15.3\%$ performance improvement on CPU/GPU compared to its FP16 counterparts, and $33.9\%$ resource consumption reduction on FPGA than the FP16 counterparts. The proposed fully-quantized L1 normalization layers achieve more than $35.54\%$ improvement in throughout on CPU compared to traditional L2 normalization layers. Moreover, theoretical analysis verifies the advancement of our method.
Related papers
- ABQ-LLM: Arbitrary-Bit Quantized Inference Acceleration for Large Language Models [9.444063879246242]
We introduce a novel arbitrary-bit quantization algorithm and inference framework, ABQ-LLM.
It achieves superior performance across various quantization settings and enables efficient arbitrary-precision quantized inference on the GPU.
arXiv Detail & Related papers (2024-08-16T06:39:08Z) - Dual Grained Quantization: Efficient Fine-Grained Quantization for LLM [6.85331857224501]
Large Language Models (LLMs) pose significant hardware challenges related to memory requirements and computational ability.
There are two mainstream quantization schemes for LLMs: coarse-grained ($textite.g.,$ channel-wise) quantization and fine-grained ($textite.g.,$ group-wise) quantization.
We introduce Dual Grained Quantization (DGQ), a novel A8W4 quantization for LLM that maintains superior performance while ensuring fast inference speed.
arXiv Detail & Related papers (2023-10-07T14:50:28Z) - Quantized Neural Networks for Low-Precision Accumulation with Guaranteed
Overflow Avoidance [68.8204255655161]
We introduce a quantization-aware training algorithm that guarantees avoiding numerical overflow when reducing the precision of accumulators during inference.
We evaluate our algorithm across multiple quantized models that we train for different tasks, showing that our approach can reduce the precision of accumulators while maintaining model accuracy with respect to a floating-point baseline.
arXiv Detail & Related papers (2023-01-31T02:46:57Z) - 8-bit Optimizers via Block-wise Quantization [57.25800395197516]
Statefuls maintain statistics over time, e.g., the exponentially smoothed sum (SGD with momentum) or squared sum (Adam) of past values.
This state can be used to accelerate optimization compared to plain gradient descent but uses memory that might otherwise be allocated to model parameters.
In this paper, we develop first gradients that use 8-bit statistics while maintaining the performance levels of using 32-bit gradient states.
arXiv Detail & Related papers (2021-10-06T15:43:20Z) - VS-Quant: Per-vector Scaled Quantization for Accurate Low-Precision
Neural Network Inference [7.886868529510128]
Quantization maps floating-point weights and activations in a trained model to low-bitwidth integer values using scale factors.
Excessive quantization, reducing precision too aggressively, results in accuracy degradation.
Per-vector scale factors can be implemented with low-bitwidth integers when using a two-level quantization scheme.
arXiv Detail & Related papers (2021-02-08T19:56:04Z) - HAWQV3: Dyadic Neural Network Quantization [73.11579145354801]
Current low-precision quantization algorithms often have the hidden cost of conversion back and forth from floating point to quantized integer values.
We present HAWQV3, a novel mixed-precision integer-only quantization framework.
arXiv Detail & Related papers (2020-11-20T23:51:43Z) - AQD: Towards Accurate Fully-Quantized Object Detection [94.06347866374927]
We propose an Accurate Quantized object Detection solution, termed AQD, to get rid of floating-point computation.
Our AQD achieves comparable or even better performance compared with the full-precision counterpart under extremely low-bit schemes.
arXiv Detail & Related papers (2020-07-14T09:07:29Z) - Efficient Integer-Arithmetic-Only Convolutional Neural Networks [87.01739569518513]
We replace conventional ReLU with Bounded ReLU and find that the decline is due to activation quantization.
Our integer networks achieve equivalent performance as the corresponding FPN networks, but have only 1/4 memory cost and run 2x faster on modern GPU.
arXiv Detail & Related papers (2020-06-21T08:23:03Z) - Exploring the Potential of Low-bit Training of Convolutional Neural
Networks [16.72709290595995]
We propose a low-bit training framework for convolutional neural networks.
Our framework is built around a novel multi-level scaling (MLS) tensor format.
Experiments show that our framework achieves a superior trade-off between the accuracy and the bit-width.
arXiv Detail & Related papers (2020-06-04T12:09:35Z) - Quantized Neural Network Inference with Precision Batching [4.519884877213097]
Precision decomposes a neural network into individual bitlayers and accumulates them using fast 1-bit operations.
Precision yields end-to-endups of over 8x on a GPU within a 1% error margin of the full precision baseline.
Across a variety of applications, Precision yields end-to-endups of over 8x on a GPU within a 1% error margin of the full precision baseline.
arXiv Detail & Related papers (2020-02-26T19:34:11Z) - Towards Unified INT8 Training for Convolutional Neural Network [83.15673050981624]
We build a unified 8-bit (INT8) training framework for common convolutional neural networks.
First, we empirically find the four distinctive characteristics of gradients, which provide us insightful clues for gradient quantization.
We propose two universal techniques, including Direction Sensitive Gradient Clipping that reduces the direction deviation of gradients.
arXiv Detail & Related papers (2019-12-29T08:37:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.