Bloch Oscillation and Landau-Zener Tunneling of a Periodically Kicked Dirac Particle
- URL: http://arxiv.org/abs/2411.10953v2
- Date: Tue, 18 Feb 2025 00:55:23 GMT
- Title: Bloch Oscillation and Landau-Zener Tunneling of a Periodically Kicked Dirac Particle
- Authors: Bin Sun, Shaowen Lan, Yi Cao, Jie Liu,
- Abstract summary: We investigate the dynamics of a relativistic spin-$frac12$ particle governed by a one-dimensional time-periodic kicking Dirac equation.
We observe distinct oscillatory behavior in the momentum space and quantum tunneling in the vicinity of zero momentum.
- Score: 8.098742147831379
- License:
- Abstract: We investigate the dynamics of a relativistic spin-$\frac{1}{2}$ particle governed by a one-dimensional time-periodic kicking Dirac equation. We observe distinct oscillatory behavior in the momentum space and quantum tunneling in the vicinity of zero momentum, which is found to be equivalent to the Bloch oscillations and Landau-Zener tunneling, i.e., Bloch-Landau-Zener (BLZ) dynamics in tilted bipartite lattices. Using the Floquet formalism, we derive an effective Hamiltonian that can accurately predict the oscillation period and amplitude. The tunneling probability has also been determined analytically. Our analysis extends to the influence of various parameters on dynamic behavior. We also discuss how relativistic effects and spin degrees of freedom impact quantum systems' transport properties and localization phenomena.
Related papers
- Bloch-Landau-Zener oscillations in a quasi-periodic potential [0.0]
Bloch oscillations and Landau-Zener tunneling are ubiquitous phenomena which are sustained by a band-gap spectrum of a periodic Hamiltonian.
Here we consider the dynamics of noninteracting atoms and Bose-Einstein condensates in a quasi-periodic one-dimensional optical lattice subjected to a weak linear force.
arXiv Detail & Related papers (2024-03-31T10:58:59Z) - The quantum Hall effect under the influence of gravity and inertia: A
unified approach [44.99833362998488]
We examine how both the integer and the fractional quantum Hall effects behave under a combined influence of gravity and inertia.
The general Hamiltonian for describing the combined effect of gravity, rotation and inertia on the electrons of a Hall sample is then built and the eigenstates are obtained.
arXiv Detail & Related papers (2024-03-11T18:01:55Z) - Radiative transport in a periodic structure with band crossings [47.82887393172228]
We derive the semi-classical model for the Schr"odinger equation in arbitrary spatial dimensions.
We consider both deterministic and random scenarios.
As a specific application, we deduce the effective dynamics of a wave packet in graphene with randomness.
arXiv Detail & Related papers (2024-02-09T23:34:32Z) - Oscillating Fields, Emergent Gravity and Particle Traps [55.2480439325792]
We study the large-scale dynamics of charged particles in a rapidly oscillating field and formulate its classical and quantum effective theory description.
Remarkably, the action models the effects of general relativity on the motion of nonrelativistic particles, with the values of the emergent curvature and speed of light determined by the field spatial distribution and frequency.
arXiv Detail & Related papers (2023-10-03T18:00:02Z) - Chirped Bloch-Harmonic oscillations in a parametrically forced optical
lattice [3.222802562733787]
Acceleration for wavepacket propagation in periodic potentials disentangles the kspace dynamics and real-space dynamics.
We analyze the dynamics of a model system in which the k-space dynamics and the real-space dynamics are in intertwined due to a position-dependent force.
arXiv Detail & Related papers (2023-06-15T16:43:42Z) - Bloch Oscillations, Landau-Zener Transition, and Topological Phase
Evolution in a Pendula Array [0.0]
We study the dynamics of a one-dimensional array of pendula with a mild spatial gradient in their self-frequency.
We map their dynamics to the topological Su-Schrieffer-Heeger model of charged quantum particles on a lattice with alternating hopping rates in an external electric field.
arXiv Detail & Related papers (2023-05-30T20:01:52Z) - Self-oscillating pump in a topological dissipative atom-cavity system [55.41644538483948]
We report on an emergent mechanism for pumping in a quantum gas coupled to an optical resonator.
Due to dissipation, the cavity field evolves between its two quadratures, each corresponding to a different centrosymmetric crystal configuration.
This self-oscillation results in a time-periodic potential analogous to that describing the transport of electrons in topological tight-binding models.
arXiv Detail & Related papers (2021-12-21T19:57:30Z) - Observation of anyonic Bloch oscillations [11.89363216592774]
We report the first experimental simulation of anyonic Bloch oscillations using electric circuits.
It is found that the oscillation period in the two-boson simulator is almost twice of that in the two-pseudofermion simulator.
arXiv Detail & Related papers (2021-10-12T12:46:56Z) - Bloch-Landau-Zener dynamics induced by a synthetic field in a photonic
quantum walk [52.77024349608834]
We realize a photonic quantum walk in the presence of a synthetic gauge field.
We investigate intriguing system dynamics characterized by the interplay between Bloch oscillations and Landau-Zener transitions.
arXiv Detail & Related papers (2020-11-11T16:35:41Z) - Zitterbewegung and Klein-tunneling phenomena for transient quantum waves [77.34726150561087]
We show that the Zitterbewegung effect manifests itself as a series of quantum beats of the particle density in the long-time limit.
We also find a time-domain where the particle density of the point source is governed by the propagation of a main wavefront.
The relative positions of these wavefronts are used to investigate the time-delay of quantum waves in the Klein-tunneling regime.
arXiv Detail & Related papers (2020-03-09T21:27:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.