論文の概要: Map-Free Trajectory Prediction with Map Distillation and Hierarchical Encoding
- arxiv url: http://arxiv.org/abs/2411.10961v1
- Date: Sun, 17 Nov 2024 04:50:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-19 14:33:18.132983
- Title: Map-Free Trajectory Prediction with Map Distillation and Hierarchical Encoding
- Title(参考訳): 地図蒸留と階層符号化による地図自由軌道予測
- Authors: Xiaodong Liu, Yucheng Xing, Xin Wang,
- Abstract要約: MFTPはMap-Free Trajectory Prediction法であり、いくつかの利点がある。
まず、推論中のHDマップの必要性を排除し、知識蒸留によるトレーニング中のマップ事前の恩恵を享受する。
第二に、空間的時間的エージェントの特徴を効果的に抽出し、それらを複数のトラジェクトリクエリに集約する新しい階層エンコーダを提案する。
- 参考スコア(独自算出の注目度): 8.857237929151795
- License:
- Abstract: Reliable motion forecasting of surrounding agents is essential for ensuring the safe operation of autonomous vehicles. Many existing trajectory prediction methods rely heavily on high-definition (HD) maps as strong driving priors. However, the availability and accuracy of these priors are not guaranteed due to substantial costs to build, localization errors of vehicles, or ongoing road constructions. In this paper, we introduce MFTP, a Map-Free Trajectory Prediction method that offers several advantages. First, it eliminates the need for HD maps during inference while still benefiting from map priors during training via knowledge distillation. Second, we present a novel hierarchical encoder that effectively extracts spatial-temporal agent features and aggregates them into multiple trajectory queries. Additionally, we introduce an iterative decoder that sequentially decodes trajectory queries to generate the final predictions. Extensive experiments show that our approach achieves state-of-the-art performance on the Argoverse dataset under the map-free setting.
- Abstract(参考訳): 自動運転車の安全運転を確保するためには,周囲のエージェントの信頼性の高い動作予測が不可欠である。
既存の軌道予測法の多くは、強い駆動先として高定義(HD)マップに大きく依存している。
しかし、建設コスト、車両のローカライズエラー、進行中の道路工事などにより、これらの事前の可用性と正確性は保証されていない。
本稿では,Map-Free Trajectory Prediction法であるMFTPを紹介する。
まず、推論中のHDマップの必要性を排除し、知識蒸留によるトレーニング中のマップ事前の恩恵を享受する。
第二に、空間的時間的エージェントの特徴を効果的に抽出し、それらを複数のトラジェクトリクエリに集約する新しい階層エンコーダを提案する。
さらに、最終的な予測を生成するために、逐次トラジェクトリクエリをデコードする反復デコーダを導入する。
大規模な実験により,本手法はArgoverseデータセット上で,マップフリー環境下での最先端性能を実現することが示された。
関連論文リスト
- Driving with Prior Maps: Unified Vector Prior Encoding for Autonomous Vehicle Mapping [18.97422977086127]
高精細マップ(HDマップ)は、自動運転車の正確なナビゲーションと意思決定に不可欠である。
オンボードセンサーを用いたHDマップのオンライン構築が,有望なソリューションとして浮上している。
本稿では,事前マップのパワーを活用して,これらの制約に対処するPresidedDriveフレームワークを提案する。
論文 参考訳(メタデータ) (2024-09-09T06:17:46Z) - PriorMapNet: Enhancing Online Vectorized HD Map Construction with Priors [15.475364300374403]
先行データを用いたオンラインベクトル化HDマップ構築を強化するために,PreferMapNetを導入する。
提案したPreferMapNetは,nuScenesおよびArgoverse2データセット上でのオンラインベクトル化HDマップ構築タスクにおいて,最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2024-08-16T15:26:23Z) - MapsTP: HD Map Images Based Multimodal Trajectory Prediction for Automated Vehicles [8.229161517598373]
我々はResNet-50を利用して高精細マップデータから画像の特徴を抽出し、IMUセンサデータを用いて速度、加速度、ヨーレートを計算する。
時間確率ネットワークを用いて潜在的な軌道を計算し、最も正確で高い確率の軌道経路を選択する。
論文 参考訳(メタデータ) (2024-07-08T10:45:30Z) - Producing and Leveraging Online Map Uncertainty in Trajectory Prediction [30.190497345299004]
我々は、現在最先端のオンラインマップ推定手法を拡張し、不確実性をさらに見積もる。
その結果,不確実性の導入によってトレーニングの収束が最大50%速くなり,予測性能が最大15%向上することがわかった。
論文 参考訳(メタデータ) (2024-03-25T05:58:33Z) - Augmenting Lane Perception and Topology Understanding with Standard
Definition Navigation Maps [51.24861159115138]
Standard Definition (SD) マップは、より安価で、世界中でカバーでき、スケーラブルな代替手段を提供する。
本稿では,オンライン地図予測にSDマップを統合する新しいフレームワークを提案し,Transformer を用いたエンコーダ SD Map Representations を提案する。
この拡張は、現在の最先端のオンラインマップ予測手法におけるレーン検出とトポロジー予測を一貫して(最大60%まで)大幅に向上させる。
論文 参考訳(メタデータ) (2023-11-07T15:42:22Z) - Pre-training on Synthetic Driving Data for Trajectory Prediction [61.520225216107306]
軌道予測におけるデータ不足の問題を緩和するパイプラインレベルのソリューションを提案する。
我々は、駆動データを生成するためにHDマップ拡張とトラジェクトリ合成を採用し、それらを事前学習することで表現を学習する。
我々は、データ拡張と事前学習戦略の有効性を実証するための広範な実験を行う。
論文 参考訳(メタデータ) (2023-09-18T19:49:22Z) - Implicit Occupancy Flow Fields for Perception and Prediction in
Self-Driving [68.95178518732965]
自動運転車(SDV)は、周囲を認識でき、他の交通参加者の将来の行動を予測できなければならない。
既存の作業は、検出されたオブジェクトの軌跡が続くオブジェクト検出を実行するか、シーン全体の密度の高い占有とフローグリッドを予測するかのいずれかである。
これは、認識と将来の予測に対する統一されたアプローチを動機付け、単一のニューラルネットワークで時間とともに占有とフローを暗黙的に表現します。
論文 参考訳(メタデータ) (2023-08-02T23:39:24Z) - Enhancing Mapless Trajectory Prediction through Knowledge Distillation [19.626383744807068]
ハイデフィニションマップ(HDマップ)は、アノテーションの高コストや、広く使われることを制限する法律の制限に悩まされる可能性がある。
本稿では,マルチモーダルな予測軌道の整合性と実際の道路トポロジの整合性を改善する問題に取り組む。
我々の解は、一般的な軌道予測ネットワークに対して一般化可能であり、余分な計算負担を伴わない。
論文 参考訳(メタデータ) (2023-06-25T09:05:48Z) - Trajectory Forecasting from Detection with Uncertainty-Aware Motion
Encoding [121.66374635092097]
物体検出と追跡から得られる軌道は、必然的にうるさい。
本稿では, 明示的に形成された軌道に依存することなく, 直接検出結果に基づく軌道予測器を提案する。
論文 参考訳(メタデータ) (2022-02-03T09:09:56Z) - Radar-based Dynamic Occupancy Grid Mapping and Object Detection [55.74894405714851]
近年、古典的占有グリッドマップのアプローチが動的占有グリッドマップに拡張されている。
本稿では,従来のアプローチのさらなる発展について述べる。
複数のレーダセンサのデータを融合し、グリッドベースの物体追跡・マッピング手法を適用する。
論文 参考訳(メタデータ) (2020-08-09T09:26:30Z) - TPNet: Trajectory Proposal Network for Motion Prediction [81.28716372763128]
Trajectory Proposal Network (TPNet) は、新しい2段階の動作予測フレームワークである。
TPNetはまず、仮説の提案として将来の軌道の候補セットを生成し、次に提案の分類と修正によって最終的な予測を行う。
4つの大規模軌道予測データセットの実験は、TPNetが定量的かつ定性的に、最先端の結果を達成することを示した。
論文 参考訳(メタデータ) (2020-04-26T00:01:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。