論文の概要: A Study of Malware Prevention in Linux Distributions
- arxiv url: http://arxiv.org/abs/2411.11017v1
- Date: Sun, 17 Nov 2024 09:42:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-19 14:35:56.777789
- Title: A Study of Malware Prevention in Linux Distributions
- Title(参考訳): Linuxディストリビューションにおけるマルウェア対策に関する研究
- Authors: Duc-Ly Vu, Trevor Dunlap, Karla Obermeier-Velazquez, Paul Gilbert, John Speed Meyers, Santiago Torres-Arias,
- Abstract要約: オープンソースソフトウェアパッケージに対する悪意ある攻撃は、ますます懸念される。
本研究は,Linuxディストリビューションリポジトリにおけるマルウェアの防止と検出の課題について考察する。
- 参考スコア(独自算出の注目度): 7.166753790047296
- License:
- Abstract: Malicious attacks on open source software packages are a growing concern. This concern morphed into a panic-inducing crisis after the revelation of the XZ Utils backdoor, which would have provided the attacker with, according to one observer, a "skeleton key" to the internet. This study therefore explores the challenges of preventing and detecting malware in Linux distribution package repositories. To do so, we ask two research questions: (1) What measures have Linux distributions implemented to counter malware, and how have maintainers experienced these efforts? (2) How effective are current malware detection tools at identifying malicious Linux packages? To answer these questions, we conduct interviews with maintainers at several major Linux distributions and introduce a Linux package malware benchmark dataset. Using this dataset, we evaluate the performance of six open source malware detection scanners. Distribution maintainers, according to the interviews, have mostly focused on reproducible builds to date. Our interviews identified only a single Linux distribution, Wolfi OS, that performs active malware scanning. Using this new benchmark dataset, the evaluation found that the performance of existing open-source malware scanners is underwhelming. Most studied tools excel at producing false positives but only infrequently detect true malware. Those that avoid high false positive rates often do so at the expense of a satisfactory true positive. Our findings provide insights into Linux distribution package repositories' current practices for malware detection and demonstrate the current inadequacy of open-source tools designed to detect malicious Linux packages.
- Abstract(参考訳): オープンソースソフトウェアパッケージに対する悪意ある攻撃は、ますます懸念される。
この懸念は、XZ Utilsのバックドアが暴露された後にパニックに陥る危機へと変化した。
そこで本研究では,Linuxディストリビューションリポジトリにおけるマルウェアの防止と検出の課題について検討する。
1) マルウェア対策としてLinuxディストリビューションを実装した方法と, メンテナがこれらの取り組みをどう経験したのか, という2つの研究課題を問う。
2) 悪意のあるLinuxパッケージを識別する現在のマルウェア検出ツールは,どの程度有効か?
これらの質問に答えるために、いくつかの主要なLinuxディストリビューションのメンテナとインタビューを行い、Linuxパッケージマルウェアベンチマークデータセットを導入する。
このデータセットを用いて,6つのオープンソースのマルウェア検出スキャナの性能を評価する。
インタビューによると、流通のメンテナーは、これまでは再現可能なビルドに重点を置いてきた。
私たちのインタビューでは、アクティブなマルウェアスキャンを行うLinuxディストリビューションであるWolfi OSのみを特定しました。
この新しいベンチマークデータセットを使うことで、既存のオープンソースのマルウェアスキャナのパフォーマンスが過大評価されていることがわかった。
ほとんどの研究ツールは偽陽性を発生させるのに優れていますが、真のマルウェアを頻繁に検出するだけです。
高い偽陽性率を避けるものは、満足のいく真正を犠牲にしてしばしばそうする。
本研究は,Linuxディストリビューションリポジトリのマルウェア検出に関する現在の実践を考察し,悪質なLinuxパッケージを検出するために設計されたオープンソースツールの現状を実証するものである。
関連論文リスト
- The Impact of SBOM Generators on Vulnerability Assessment in Python: A Comparison and a Novel Approach [56.4040698609393]
Software Bill of Materials (SBOM) は、ソフトウェア構成における透明性と妥当性を高めるツールとして推奨されている。
現在のSBOM生成ツールは、コンポーネントや依存関係を識別する際の不正確さに悩まされることが多い。
提案するPIP-sbomは,その欠点に対処する新しいピップインスパイアされたソリューションである。
論文 参考訳(メタデータ) (2024-09-10T10:12:37Z) - Understanding crypter-as-a-service in a popular underground marketplace [51.328567400947435]
Cryptersは、ターゲットバイナリを変換することで、アンチウイルス(AV)アプリケーションからの検出を回避できるソフトウェアの一部です。
シークレット・アズ・ア・サービスモデルは,検出機構の高度化に対応して人気を博している。
本論文は,シークレット・アズ・ア・サービスに特化したオンライン地下市場に関する最初の研究である。
論文 参考訳(メタデータ) (2024-05-20T08:35:39Z) - JITScanner: Just-in-Time Executable Page Check in the Linux Operating System [6.725792100548271]
JITScannerはLoadable Kernel Module (LKM)上に構築されたLinux指向パッケージとして開発されている。
スケーラブルなマルチプロセッサ/コア技術を使用してLKMと効率的に通信するユーザレベルのコンポーネントを統合する。
JITScannerによるマルウェア検出の有効性と、通常のランタイムシナリオにおける最小限の侵入が広くテストされている。
論文 参考訳(メタデータ) (2024-04-25T17:00:08Z) - OSS Malicious Package Analysis in the Wild [17.028240712650486]
本稿では、散在するオンラインソースから23,425の悪意あるパッケージのデータセットを構築し、キュレートする。
次に,OSSマルウェアコーパスを表現し,悪意のあるパッケージ解析を行う知識グラフを提案する。
論文 参考訳(メタデータ) (2024-04-07T15:25:13Z) - DRSM: De-Randomized Smoothing on Malware Classifier Providing Certified
Robustness [58.23214712926585]
我々は,マルウェア検出領域の非ランダム化スムース化技術を再設計し,DRSM(De-Randomized Smoothed MalConv)を開発した。
具体的には,実行可能ファイルの局所構造を最大に保ちながら,逆数バイトの影響を確実に抑制するウィンドウアブレーション方式を提案する。
私たちは、マルウェア実行ファイルの静的検出という領域で、認証された堅牢性を提供する最初の人です。
論文 参考訳(メタデータ) (2023-03-20T17:25:22Z) - Mate! Are You Really Aware? An Explainability-Guided Testing Framework
for Robustness of Malware Detectors [49.34155921877441]
マルウェア検出装置のロバスト性を示すための説明可能性誘導型およびモデルに依存しないテストフレームワークを提案する。
次に、このフレームワークを使用して、操作されたマルウェアを検出する最先端のマルウェア検知器の能力をテストする。
我々の発見は、現在のマルウェア検知器の限界と、その改善方法に光を当てた。
論文 参考訳(メタデータ) (2021-11-19T08:02:38Z) - HAPSSA: Holistic Approach to PDF Malware Detection Using Signal and
Statistical Analysis [16.224649756613655]
悪意あるPDF文書は、様々なセキュリティ組織に深刻な脅威をもたらす。
最先端のアプローチでは、機械学習(ML)を使用してPDFマルウェアを特徴付ける機能を学ぶ。
本稿では,PDF マルウェア検出のための簡易かつ効果的な総合的なアプローチを導出する。
論文 参考訳(メタデータ) (2021-11-08T18:32:47Z) - A Novel Malware Detection Mechanism based on Features Extracted from
Converted Malware Binary Images [0.22843885788439805]
マルウェアのバイナリイメージを使用して、異なる特徴を抽出し、得られたデータセットに異なるML分類器を用いる。
本手法は,抽出した特徴に基づくマルウェアの分類に成功していることを示す。
論文 参考訳(メタデータ) (2021-04-14T06:55:52Z) - Early Detection of In-Memory Malicious Activity based on Run-time
Environmental Features [4.213427823201119]
攻撃前に行われたメモリ内の悪意ある活動を検出するための新しいエンドツーエンドソリューションを提案する。
このソリューションは、オーバーヘッドと偽陽性の低減とデプロイの簡略化を実現します。
論文 参考訳(メタデータ) (2021-03-30T02:19:00Z) - Being Single Has Benefits. Instance Poisoning to Deceive Malware
Classifiers [47.828297621738265]
攻撃者は、マルウェア分類器を訓練するために使用されるデータセットをターゲットとした、高度で効率的な中毒攻撃を、どのように起動できるかを示す。
マルウェア検出領域における他の中毒攻撃とは対照的に、我々の攻撃はマルウェアファミリーではなく、移植されたトリガーを含む特定のマルウェアインスタンスに焦点を当てている。
我々は、この新たに発見された深刻な脅威に対する将来の高度な防御に役立つ包括的検出手法を提案する。
論文 参考訳(メタデータ) (2020-10-30T15:27:44Z) - Adversarial EXEmples: A Survey and Experimental Evaluation of Practical
Attacks on Machine Learning for Windows Malware Detection [67.53296659361598]
EXEmplesは、比較的少ない入力バイトを摂動することで、機械学習に基づく検出をバイパスすることができる。
我々は、機械学習モデルに対する過去の攻撃を包含し、一般化するだけでなく、3つの新たな攻撃を含む統一フレームワークを開発する。
これらの攻撃はFull DOS、Extended、Shiftと呼ばれ、DOSヘッダをそれぞれ操作し、拡張し、第1セクションの内容を変更することで、敵のペイロードを注入する。
論文 参考訳(メタデータ) (2020-08-17T07:16:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。