Skeleton-Guided Spatial-Temporal Feature Learning for Video-Based Visible-Infrared Person Re-Identification
- URL: http://arxiv.org/abs/2411.11069v1
- Date: Sun, 17 Nov 2024 13:18:05 GMT
- Title: Skeleton-Guided Spatial-Temporal Feature Learning for Video-Based Visible-Infrared Person Re-Identification
- Authors: Wenjia Jiang, Xiaoke Zhu, Jiakang Gao, Di Liao,
- Abstract summary: Video-based visible-infrared person re-identification (VVI-ReID) is challenging due to significant modality feature discrepancies.
We propose a novel Skeleton-guided spatial-temporal feAture leaRning (STAR) method for VVI-ReID.
- Score: 2.623742123778503
- License:
- Abstract: Video-based visible-infrared person re-identification (VVI-ReID) is challenging due to significant modality feature discrepancies. Spatial-temporal information in videos is crucial, but the accuracy of spatial-temporal information is often influenced by issues like low quality and occlusions in videos. Existing methods mainly focus on reducing modality differences, but pay limited attention to improving spatial-temporal features, particularly for infrared videos. To address this, we propose a novel Skeleton-guided spatial-Temporal feAture leaRning (STAR) method for VVI-ReID. By using skeleton information, which is robust to issues such as poor image quality and occlusions, STAR improves the accuracy of spatial-temporal features in videos of both modalities. Specifically, STAR employs two levels of skeleton-guided strategies: frame level and sequence level. At the frame level, the robust structured skeleton information is used to refine the visual features of individual frames. At the sequence level, we design a feature aggregation mechanism based on skeleton key points graph, which learns the contribution of different body parts to spatial-temporal features, further enhancing the accuracy of global features. Experiments on benchmark datasets demonstrate that STAR outperforms state-of-the-art methods. Code will be open source soon.
Related papers
- Weakly Supervised Video Anomaly Detection and Localization with Spatio-Temporal Prompts [57.01985221057047]
This paper introduces a novel method that learnstemporal prompt embeddings for weakly supervised video anomaly detection and localization (WSVADL) based on pre-trained vision-language models (VLMs)
Our method achieves state-of-theart performance on three public benchmarks for the WSVADL task.
arXiv Detail & Related papers (2024-08-12T03:31:29Z) - A Spatial-Temporal Deformable Attention based Framework for Breast
Lesion Detection in Videos [107.96514633713034]
We propose a spatial-temporal deformable attention based framework, named STNet.
Our STNet introduces a spatial-temporal deformable attention module to perform local spatial-temporal feature fusion.
Experiments on the public breast lesion ultrasound video dataset show that our STNet obtains a state-of-the-art detection performance.
arXiv Detail & Related papers (2023-09-09T07:00:10Z) - Deeply-Coupled Convolution-Transformer with Spatial-temporal
Complementary Learning for Video-based Person Re-identification [91.56939957189505]
We propose a novel spatial-temporal complementary learning framework named Deeply-Coupled Convolution-Transformer (DCCT) for high-performance video-based person Re-ID.
Our framework could attain better performances than most state-of-the-art methods.
arXiv Detail & Related papers (2023-04-27T12:16:44Z) - Leaping Into Memories: Space-Time Deep Feature Synthesis [93.10032043225362]
We propose LEAPS, an architecture-independent method for synthesizing videos from internal models.
We quantitatively and qualitatively evaluate the applicability of LEAPS by inverting a range of architectures convolutional attention-based on Kinetics-400.
arXiv Detail & Related papers (2023-03-17T12:55:22Z) - Video Salient Object Detection via Contrastive Features and Attention
Modules [106.33219760012048]
We propose a network with attention modules to learn contrastive features for video salient object detection.
A co-attention formulation is utilized to combine the low-level and high-level features.
We show that the proposed method requires less computation, and performs favorably against the state-of-the-art approaches.
arXiv Detail & Related papers (2021-11-03T17:40:32Z) - Spatial-Temporal Correlation and Topology Learning for Person
Re-Identification in Videos [78.45050529204701]
We propose a novel framework to pursue discriminative and robust representation by modeling cross-scale spatial-temporal correlation.
CTL utilizes a CNN backbone and a key-points estimator to extract semantic local features from human body.
It explores a context-reinforced topology to construct multi-scale graphs by considering both global contextual information and physical connections of human body.
arXiv Detail & Related papers (2021-04-15T14:32:12Z) - A Graph Attention Spatio-temporal Convolutional Network for 3D Human
Pose Estimation in Video [7.647599484103065]
We improve the learning of constraints in human skeleton by modeling local global spatial information via attention mechanisms.
Our approach effectively mitigates depth ambiguity and self-occlusion, generalizes to half upper body estimation, and achieves competitive performance on 2D-to-3D video pose estimation.
arXiv Detail & Related papers (2020-03-11T14:54:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.