DynImg: Key Frames with Visual Prompts are Good Representation for Multi-Modal Video Understanding
- URL: http://arxiv.org/abs/2507.15569v1
- Date: Mon, 21 Jul 2025 12:50:49 GMT
- Title: DynImg: Key Frames with Visual Prompts are Good Representation for Multi-Modal Video Understanding
- Authors: Xiaoyi Bao, Chenwei Xie, Hao Tang, Tingyu Weng, Xiaofeng Wang, Yun Zheng, Xingang Wang,
- Abstract summary: We propose an innovative video representation method called Dynamic-Image (DynImg)<n>Specifically, we introduce a set of non-key frames as temporal prompts to highlight the spatial areas containing fast-moving objects.<n>During the process of visual feature extraction, these prompts guide the model to pay additional attention to the fine-grained spatial features corresponding to these regions.
- Score: 19.50051728766238
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, the introduction of Multi-modal Large Language Models (MLLMs) into video understanding tasks has become increasingly prevalent. However, how to effectively integrate temporal information remains a critical research focus. Traditional approaches treat spatial and temporal information separately. Due to issues like motion blur, it is challenging to accurately represent the spatial information of rapidly moving objects. This can lead to temporally important regions being underemphasized during spatial feature extraction, which in turn hinders accurate spatio-temporal interaction and video understanding. To address this limitation, we propose an innovative video representation method called Dynamic-Image (DynImg). Specifically, we introduce a set of non-key frames as temporal prompts to highlight the spatial areas containing fast-moving objects. During the process of visual feature extraction, these prompts guide the model to pay additional attention to the fine-grained spatial features corresponding to these regions. Moreover, to maintain the correct sequence for DynImg, we employ a corresponding 4D video Rotary Position Embedding. This retains both the temporal and spatial adjacency of DynImg, helping MLLM understand the spatio-temporal order within this combined format. Experimental evaluations reveal that DynImg surpasses the state-of-the-art methods by approximately 2% across multiple video understanding benchmarks, proving the effectiveness of our temporal prompts in enhancing video comprehension.
Related papers
- STOP: Integrated Spatial-Temporal Dynamic Prompting for Video Understanding [48.12128042470839]
We propose an integrated Spatial-TempOral dynamic Prompting (STOP) model.<n>It consists of two complementary modules, the intra-frame spatial prompting and inter-frame temporal prompting.<n>STOP consistently achieves superior performance against state-of-the-art methods.
arXiv Detail & Related papers (2025-03-20T09:16:20Z) - SpaceVLLM: Endowing Multimodal Large Language Model with Spatio-Temporal Video Grounding Capability [58.46310813774538]
Large language models (LMLMs) have made remarkable progress in either temporal or spatial localization.<n>However they struggle to perform-temporal video grounding.<n>This limitation stems from two major challenges.<n>We introduce SpaceLM, a MLLMVL endowed with temporal-temporal video grounding.
arXiv Detail & Related papers (2025-03-18T07:40:36Z) - When Spatial meets Temporal in Action Recognition [34.53091498930863]
We introduce the Temporal Integration and Motion Enhancement (TIME) layer, a novel preprocessing technique designed to incorporate temporal information.
The TIME layer generates new video frames by rearranging the original sequence, preserving temporal order while embedding $N2$ temporally evolving frames into a single spatial grid.
Our experiments show that the TIME layer enhances recognition accuracy, offering valuable insights for video processing tasks.
arXiv Detail & Related papers (2024-11-22T16:39:45Z) - TC-LLaVA: Rethinking the Transfer from Image to Video Understanding with Temporal Considerations [23.188508465235717]
We propose two strategies to enhance the model's capability in video understanding tasks.
The first approach focuses on the enhancement of Rotary Position Embedding (RoPE) with Temporal-Aware Dual RoPE.
The second approach involves enhancing the Attention Mask with the Frame-wise Block Causal Attention Mask.
arXiv Detail & Related papers (2024-09-05T02:54:17Z) - MLLM as Video Narrator: Mitigating Modality Imbalance in Video Moment Retrieval [53.417646562344906]
Video Moment Retrieval (VMR) aims to localize a specific temporal segment within an untrimmed long video given a natural language query.
Existing methods often suffer from inadequate training annotations, i.e., the sentence typically matches with a fraction of the prominent video content in the foreground with limited wording diversity.
This intrinsic modality imbalance leaves a considerable portion of visual information remaining unaligned with text.
In this work, we take an MLLM as a video narrator to generate plausible textual descriptions of the video, thereby mitigating the modality imbalance and boosting the temporal localization.
arXiv Detail & Related papers (2024-06-25T18:39:43Z) - Structured Video-Language Modeling with Temporal Grouping and Spatial Grounding [112.3913646778859]
We propose a simple yet effective video-language modeling framework, S-ViLM.
It includes two novel designs, inter-clip spatial grounding and intra-clip temporal grouping, to promote learning region-object alignment and temporal-aware features.
S-ViLM surpasses the state-of-the-art methods substantially on four representative downstream tasks.
arXiv Detail & Related papers (2023-03-28T22:45:07Z) - Video Salient Object Detection via Contrastive Features and Attention
Modules [106.33219760012048]
We propose a network with attention modules to learn contrastive features for video salient object detection.
A co-attention formulation is utilized to combine the low-level and high-level features.
We show that the proposed method requires less computation, and performs favorably against the state-of-the-art approaches.
arXiv Detail & Related papers (2021-11-03T17:40:32Z) - BiST: Bi-directional Spatio-Temporal Reasoning for Video-Grounded
Dialogues [95.8297116307127]
We propose Bi-directional Spatio-Temporal Learning (BiST), a vision-language neural framework for high-resolution queries in videos.
Specifically, our approach exploits both spatial and temporal-level information, and learns dynamic information diffusion between the two feature spaces.
BiST achieves competitive performance and generates reasonable responses on a large-scale AVSD benchmark.
arXiv Detail & Related papers (2020-10-20T07:43:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.