論文の概要: D-Cube: Exploiting Hyper-Features of Diffusion Model for Robust Medical Classification
- arxiv url: http://arxiv.org/abs/2411.11087v1
- Date: Sun, 17 Nov 2024 14:30:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-19 14:33:12.120246
- Title: D-Cube: Exploiting Hyper-Features of Diffusion Model for Robust Medical Classification
- Title(参考訳): D-Cube:ロバスト医療分類のための拡散モデルの高機能展開
- Authors: Minhee Jang, Juheon Son, Thanaporn Viriyasaranon, Junho Kim, Jang-Hwan Choi,
- Abstract要約: 本稿では拡散型診断(D-Cube)について紹介する。これは拡散モデルから高機能と対照的な学習を併用して癌診断を改善する新しいアプローチである。
D-Cubeは拡散モデルの堅牢な表現能力を利用する高度な特徴選択技術を採用している。
D-CubeはCT,MRI,X線など,複数の医用画像モダリティに対して有効であることが実験的に検証された。
- 参考スコア(独自算出の注目度): 9.237437350215897
- License:
- Abstract: The integration of deep learning technologies in medical imaging aims to enhance the efficiency and accuracy of cancer diagnosis, particularly for pancreatic and breast cancers, which present significant diagnostic challenges due to their high mortality rates and complex imaging characteristics. This paper introduces Diffusion-Driven Diagnosis (D-Cube), a novel approach that leverages hyper-features from a diffusion model combined with contrastive learning to improve cancer diagnosis. D-Cube employs advanced feature selection techniques that utilize the robust representational capabilities of diffusion models, enhancing classification performance on medical datasets under challenging conditions such as data imbalance and limited sample availability. The feature selection process optimizes the extraction of clinically relevant features, significantly improving classification accuracy and demonstrating resilience in imbalanced and limited data scenarios. Experimental results validate the effectiveness of D-Cube across multiple medical imaging modalities, including CT, MRI, and X-ray, showing superior performance compared to existing baseline models. D-Cube represents a new strategy in cancer detection, employing advanced deep learning techniques to achieve state-of-the-art diagnostic accuracy and efficiency.
- Abstract(参考訳): 医用画像への深層学習技術の統合は、特に膵癌や乳癌におけるがん診断の効率と精度を高めることを目的としている。
本稿では拡散型診断(D-Cube)について紹介する。これは拡散モデルから高機能と対照的な学習を併用して癌診断を改善する新しいアプローチである。
D-Cubeは、拡散モデルの堅牢な表現能力を利用する高度な特徴選択技術を採用し、データ不均衡や限られたサンプル可用性といった困難な条件下で、医療データセットの分類性能を向上させる。
特徴選択プロセスは、臨床的に関係のある特徴の抽出を最適化し、分類精度を著しく改善し、不均衡および制限されたデータシナリオにおけるレジリエンスを示す。
D-Cube はCT,MRI,X線を含む複数の医療画像モダリティに対して有効であり,既存のベースラインモデルと比較して優れた性能を示した。
D-Cubeは、最先端の診断精度と効率を達成するために高度なディープラーニング技術を活用する、がん検出の新しい戦略である。
関連論文リスト
- Multiscale Latent Diffusion Model for Enhanced Feature Extraction from Medical Images [5.395912799904941]
CTスキャナーモデルと取得プロトコルのバリエーションは、抽出した放射能特性に有意な変動をもたらす。
LTDiff++は医療画像の特徴抽出を強化するために設計されたマルチスケール潜在拡散モデルである。
論文 参考訳(メタデータ) (2024-10-05T02:13:57Z) - Multi-modal Medical Image Fusion For Non-Small Cell Lung Cancer Classification [7.002657345547741]
非小細胞肺癌(NSCLC)は、世界中のがん死亡の主な原因である。
本稿では, 融合医療画像(CT, PET)と臨床健康記録, ゲノムデータとを合成する, マルチモーダルデータの革新的な統合について紹介する。
NSCLCの検出と分類精度の大幅な向上により,本研究は既存のアプローチを超越している。
論文 参考訳(メタデータ) (2024-09-27T12:59:29Z) - CC-DCNet: Dynamic Convolutional Neural Network with Contrastive Constraints for Identifying Lung Cancer Subtypes on Multi-modality Images [13.655407979403945]
肺がんサブタイプを多次元・多モード画像で正確に分類するための新しい深層学習ネットワークを提案する。
提案モデルの強みは, 対のCT-病理画像セットと独立のCT画像セットの両方を動的に処理できることにある。
また,ネットワーク学習を通じてモダリティ関係を定量的にマッピングするコントラスト制約モジュールも開発した。
論文 参考訳(メタデータ) (2024-07-18T01:42:00Z) - MMFusion: Multi-modality Diffusion Model for Lymph Node Metastasis Diagnosis in Esophageal Cancer [13.74067035373274]
CT画像に基づくリンパ節転移診断のためのマルチモーダルな不均一グラフに基づく条件付き特徴誘導拡散モデルを提案する。
本稿では, 悪性腫瘍とリンパ節像の関連性, 優先性を明らかにすることを目的として, マスク付き関係表現学習戦略を提案する。
論文 参考訳(メタデータ) (2024-05-15T17:52:00Z) - Optimizing Synthetic Correlated Diffusion Imaging for Breast Cancer Tumour Delineation [71.91773485443125]
CDI$s$ - 最適化されたモダリティにより最高のAUCが達成され、金標準のモダリティが0.0044より優れていることを示す。
特に、最適化されたCDI$s$モダリティは、最適化されていないCDI$s$値よりも0.02以上のAUC値を達成する。
論文 参考訳(メタデータ) (2024-05-13T16:07:58Z) - Scalable Online Disease Diagnosis via Multi-Model-Fused Actor-Critic
Reinforcement Learning [9.274138493400436]
医療のアドバイスをオンラインで求めている人にとっては、患者と対話して自動的に疾患を診断できるAIベースの対話エージェントが有効な選択肢だ。
これは、強化学習(RL)アプローチを自然解として提案した逐次的特徴(症状)選択と分類の問題として定式化することができる。
生成的アクターネットワークと診断批評家ネットワークから構成されるMMF-AC(Multi-Model-Fused Actor-Critic)フレームワークを提案する。
論文 参考訳(メタデータ) (2022-06-08T03:06:16Z) - SSD-KD: A Self-supervised Diverse Knowledge Distillation Method for
Lightweight Skin Lesion Classification Using Dermoscopic Images [62.60956024215873]
皮膚がんは最も一般的な悪性腫瘍の1つであり、人口に影響を与え、世界中で経済的な重荷を負っている。
皮膚がん検出のほとんどの研究は、ポータブルデバイス上での計算資源の制限を考慮せずに、高い予測精度を追求している。
本研究は,皮膚疾患分類のための汎用的なKDフレームワークに多様な知識を統一する,SSD-KDと呼ばれる新しい手法を提案する。
論文 参考訳(メタデータ) (2022-03-22T06:54:29Z) - Variational Knowledge Distillation for Disease Classification in Chest
X-Rays [102.04931207504173]
我々は,X線に基づく疾患分類のための新しい確率的推論フレームワークである反復的知識蒸留(VKD)を提案する。
提案手法の有効性を,X線画像とEHRを用いた3つの公開ベンチマークデータセットに示す。
論文 参考訳(メタデータ) (2021-03-19T14:13:56Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
ディープラーニングは、病気の識別性能を改善するための最も強力なコンピュータ支援診断技術となった。
胸部X線撮影では、大規模データの注釈付けには専門的なドメイン知識が必要で、時間を要する。
本論文では、単一モデルにおける疾患同定性能を改善するために、複数対1の分布学習(MODL)とK-nearest neighbor smoothing(KNNS)手法を提案する。
論文 参考訳(メタデータ) (2021-02-26T02:29:30Z) - Inheritance-guided Hierarchical Assignment for Clinical Automatic
Diagnosis [50.15205065710629]
臨床診断は、臨床ノートに基づいて患者に診断符号を割り当てることを目的としており、臨床意思決定において重要な役割を担っている。
本稿では,臨床自動診断のための継承誘導階層と共起グラフの伝播を組み合わせた新しい枠組みを提案する。
論文 参考訳(メタデータ) (2021-01-27T13:16:51Z) - Diagnosis of Coronavirus Disease 2019 (COVID-19) with Structured Latent
Multi-View Representation Learning [48.05232274463484]
最近、コロナウイルス病2019(COVID-19)の流行は世界中で急速に広まっている。
多くの患者と医師の重労働のために、機械学習アルゴリズムによるコンピュータ支援診断が緊急に必要である。
本研究では,CT画像から抽出した一連の特徴を用いて,COVID-19の診断を行うことを提案する。
論文 参考訳(メタデータ) (2020-05-06T15:19:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。