論文の概要: DBF-Net: A Dual-Branch Network with Feature Fusion for Ultrasound Image Segmentation
- arxiv url: http://arxiv.org/abs/2411.11116v1
- Date: Sun, 17 Nov 2024 16:14:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-19 14:27:25.341935
- Title: DBF-Net: A Dual-Branch Network with Feature Fusion for Ultrasound Image Segmentation
- Title(参考訳): DBF-Net:超音波画像分割のための特徴融合型デュアルブランチネットワーク
- Authors: Guoping Xu, Ximing Wu, Wentao Liao, Xinglong Wu, Qing Huang, Chang Li,
- Abstract要約: 両枝深部ニューラルネットワークであるUBBS-Netを導入し, ボディーとバウンダリの関係を学習してセグメンテーションを改善する。
また,身体情報と境界情報を統合する機能融合モジュールを提案する。
- 参考スコア(独自算出の注目度): 5.114118320876544
- License:
- Abstract: Accurately segmenting lesions in ultrasound images is challenging due to the difficulty in distinguishing boundaries between lesions and surrounding tissues. While deep learning has improved segmentation accuracy, there is limited focus on boundary quality and its relationship with body structures. To address this, we introduce UBBS-Net, a dual-branch deep neural network that learns the relationship between body and boundary for improved segmentation. We also propose a feature fusion module to integrate body and boundary information. Evaluated on three public datasets, UBBS-Net outperforms existing methods, achieving Dice Similarity Coefficients of 81.05% for breast cancer, 76.41% for brachial plexus nerves, and 87.75% for infantile hemangioma segmentation. Our results demonstrate the effectiveness of UBBS-Net for ultrasound image segmentation. The code is available at https://github.com/apple1986/DBF-Net.
- Abstract(参考訳): 病変と周囲組織の境界を区別することが困難であるため,超音波画像の正確なセグメント化は困難である。
深層学習はセグメンテーションの精度を向上させる一方で、境界品質と身体構造との関係に限定的な焦点が当てられている。
この問題に対処するため,両枝深部ニューラルネットワークであるUBBS-Netを導入し,身体と境界の関係を学習し,セグメンテーションを改善する。
また,身体情報と境界情報を統合する機能融合モジュールを提案する。
UBBS-Netは3つの公的データセットで評価され、乳がんでは81.05%、腕神経では76.41%、乳児の血管腫のセグメンテーションでは87.75%のDice similarity Coefficientを達成している。
超音波画像分割におけるUBBS-Netの有効性について検討した。
コードはhttps://github.com/apple 1986/DBF-Netで公開されている。
関連論文リスト
- Modifying the U-Net's Encoder-Decoder Architecture for Segmentation of Tumors in Breast Ultrasound Images [0.0]
U-Netとエンコーダデコーダアーキテクチャに基づくニューラルネットワーク(NN)を提案する。
我々のネットワーク(CResU-Net)は、BUSIデータセットでそれぞれ76.88%、71.5%、90.3%、97.4%のDice類似度係数(DSC)、IoU(Intersection over Union)、AUC(Area Under curve)、ACC(Global accuracy)を得た。
論文 参考訳(メタデータ) (2024-09-01T07:47:48Z) - M3BUNet: Mobile Mean Max UNet for Pancreas Segmentation on CT-Scans [25.636974007788986]
我々は,M3BUNetを提案する。M3BUNetはMobileNetとU-Netニューラルネットワークの融合で,2段階に分けて膵CT像を段階的に分割する,新しい平均値(MM)アテンションを備える。
細かなセグメンテーションの段階では、ウェーブレット分解フィルタを用いてマルチインプット画像を作成することにより、膵のセグメンテーション性能が向上することがわかった。
提案手法は,最大89.53%のDice similarity Coefficient(DSC)値と最大81.16のIntersection Over Union(IOU)スコアをNIH pancreasデータセットで達成する。
論文 参考訳(メタデータ) (2024-01-18T23:10:08Z) - WATUNet: A Deep Neural Network for Segmentation of Volumetric Sweep
Imaging Ultrasound [1.2903292694072621]
ボリューム・スイープ・イメージング(VSI)は、訓練を受けていないオペレーターが高品質な超音波画像をキャプチャできる革新的な手法である。
本稿ではWavelet_Attention_UNet(WATUNet)と呼ばれる新しいセグメンテーションモデルを提案する。
このモデルでは、簡単な接続ではなく、ウェーブレットゲート(WG)とアテンションゲート(AG)をエンコーダとデコーダの間に組み込んで、上記の制限を克服する。
論文 参考訳(メタデータ) (2023-11-17T20:32:37Z) - Self-Supervised Correction Learning for Semi-Supervised Biomedical Image
Segmentation [84.58210297703714]
半教師付きバイオメディカルイメージセグメンテーションのための自己教師付き補正学習パラダイムを提案する。
共有エンコーダと2つの独立デコーダを含むデュアルタスクネットワークを設計する。
異なるタスクのための3つの医用画像分割データセットの実験により,本手法の優れた性能が示された。
論文 参考訳(メタデータ) (2023-01-12T08:19:46Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
本稿では,信頼性の高いマルチスケールウェーブレットエンハンストランスネットワークを提案する。
本研究では,ウェーブレット型特徴抽出器ネットワークとマルチスケール変圧器モジュールを統合したセグメンテーションバックボーンを開発した。
提案手法は,他の最先端セグメンテーション手法と比較して信頼性の高いセグメンテーション精度を実現する。
論文 参考訳(メタデータ) (2022-12-01T07:32:56Z) - BAGNet: Bidirectional Aware Guidance Network for Malignant Breast
lesions Segmentation [5.823080777200961]
乳房超音波画像から悪性病変を識別するために, 双方向意識誘導ネットワーク(BAGNet)を提案する。
BAGNetは、入力された粗いサリエンシマップからグローバル(低レベル)とローカル(高レベル)の機能の間のコンテキストをキャプチャする。
グローバルな特徴マップの導入は、病変領域における周囲の組織(背景)の干渉を減らすことができる。
論文 参考訳(メタデータ) (2022-04-28T08:28:06Z) - Global Guidance Network for Breast Lesion Segmentation in Ultrasound
Images [84.03487786163781]
我々は,大域的誘導ブロック(GGB)と乳房病変境界検出モジュールを備えた深部畳み込みニューラルネットワークを開発した。
当社のネットワークは、乳房超音波病変分割における他の医療画像分割方法および最近のセマンティックセグメンテーション方法よりも優れています。
論文 参考訳(メタデータ) (2021-04-05T13:15:22Z) - An Uncertainty-Driven GCN Refinement Strategy for Organ Segmentation [53.425900196763756]
本研究では,不確実性解析とグラフ畳み込みネットワークに基づくセグメンテーション改善手法を提案する。
半教師付きグラフ学習問題を定式化するために、特定の入力ボリュームにおける畳み込みネットワークの不確実性レベルを用いる。
本手法は膵臓で1%,脾臓で2%向上し,最先端のCRF改善法よりも優れていた。
論文 参考訳(メタデータ) (2020-12-06T18:55:07Z) - Weakly-supervised Learning For Catheter Segmentation in 3D Frustum
Ultrasound [74.22397862400177]
超音波を用いた新しいカテーテルセグメンテーション法を提案する。
提案手法は,1ボリュームあたり0.25秒の効率で最先端の性能を実現した。
論文 参考訳(メタデータ) (2020-10-19T13:56:22Z) - KiU-Net: Towards Accurate Segmentation of Biomedical Images using
Over-complete Representations [59.65174244047216]
本稿では,高次元にデータを投影するオーバーコンプリートアーキテクチャ(Ki-Net)を提案する。
このネットワークは、U-Netで拡張されると、小さな解剖学的ランドマークを分割する場合に大幅に改善される。
早期新生児の2次元超音波による脳解剖学的セグメント化の課題について検討した。
論文 参考訳(メタデータ) (2020-06-08T18:59:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。