DBF-Net: A Dual-Branch Network with Feature Fusion for Ultrasound Image Segmentation
- URL: http://arxiv.org/abs/2411.11116v1
- Date: Sun, 17 Nov 2024 16:14:00 GMT
- Title: DBF-Net: A Dual-Branch Network with Feature Fusion for Ultrasound Image Segmentation
- Authors: Guoping Xu, Ximing Wu, Wentao Liao, Xinglong Wu, Qing Huang, Chang Li,
- Abstract summary: We introduce UBBS-Net, a dual-branch deep neural network that learns the relationship between body and boundary for improved segmentation.
We also propose a feature fusion module to integrate body and boundary information.
- Score: 5.114118320876544
- License:
- Abstract: Accurately segmenting lesions in ultrasound images is challenging due to the difficulty in distinguishing boundaries between lesions and surrounding tissues. While deep learning has improved segmentation accuracy, there is limited focus on boundary quality and its relationship with body structures. To address this, we introduce UBBS-Net, a dual-branch deep neural network that learns the relationship between body and boundary for improved segmentation. We also propose a feature fusion module to integrate body and boundary information. Evaluated on three public datasets, UBBS-Net outperforms existing methods, achieving Dice Similarity Coefficients of 81.05% for breast cancer, 76.41% for brachial plexus nerves, and 87.75% for infantile hemangioma segmentation. Our results demonstrate the effectiveness of UBBS-Net for ultrasound image segmentation. The code is available at https://github.com/apple1986/DBF-Net.
Related papers
- Modifying the U-Net's Encoder-Decoder Architecture for Segmentation of Tumors in Breast Ultrasound Images [0.0]
We propose a Neural Network (NN) based on U-Net and an encoder-decoder architecture.
Our network (CResU-Net) obtained 82.88%, 77.5%, 90.3%, and 98.4% in terms of Dice similarity coefficients.
arXiv Detail & Related papers (2024-09-01T07:47:48Z) - M3BUNet: Mobile Mean Max UNet for Pancreas Segmentation on CT-Scans [25.636974007788986]
We propose M3BUNet, a fusion of MobileNet and U-Net neural networks, equipped with a novel Mean-Max (MM) attention that operates in two stages to gradually segment pancreas CT images.
For the fine segmentation stage, we found that applying a wavelet decomposition filter to create multi-input images enhances pancreas segmentation performance.
Our approach demonstrates a considerable performance improvement, achieving an average Dice Similarity Coefficient (DSC) value of up to 89.53% and an Intersection Over Union (IOU) score of up to 81.16 for the NIH pancreas dataset.
arXiv Detail & Related papers (2024-01-18T23:10:08Z) - WATUNet: A Deep Neural Network for Segmentation of Volumetric Sweep
Imaging Ultrasound [1.2903292694072621]
Volume sweep imaging (VSI) is an innovative approach that enables untrained operators to capture quality ultrasound images.
We present a novel segmentation model known as Wavelet_Attention_UNet (WATUNet)
In this model, we incorporate wavelet gates (WGs) and attention gates (AGs) between the encoder and decoder instead of a simple connection to overcome the limitations mentioned.
arXiv Detail & Related papers (2023-11-17T20:32:37Z) - Self-Supervised Correction Learning for Semi-Supervised Biomedical Image
Segmentation [84.58210297703714]
We propose a self-supervised correction learning paradigm for semi-supervised biomedical image segmentation.
We design a dual-task network, including a shared encoder and two independent decoders for segmentation and lesion region inpainting.
Experiments on three medical image segmentation datasets for different tasks demonstrate the outstanding performance of our method.
arXiv Detail & Related papers (2023-01-12T08:19:46Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
In this paper, we propose a novel reliable multi-scale wavelet-enhanced transformer network.
We develop a novel segmentation backbone that integrates a wavelet-enhanced feature extractor network and a multi-scale transformer module.
Our proposed method achieves better segmentation accuracy with a high degree of reliability as compared to other state-of-the-art segmentation approaches.
arXiv Detail & Related papers (2022-12-01T07:32:56Z) - BAGNet: Bidirectional Aware Guidance Network for Malignant Breast
lesions Segmentation [5.823080777200961]
The bidirectional aware guidance network (BAGNet) is proposed to segment the malignant lesion from breast ultrasound images.
BAGNet captures the context between global (low-level) and local (high-level) features from the input coarse saliency map.
The introduction of the global feature map can reduce the interference of surrounding tissue (background) on the lesion regions.
arXiv Detail & Related papers (2022-04-28T08:28:06Z) - Global Guidance Network for Breast Lesion Segmentation in Ultrasound
Images [84.03487786163781]
We develop a deep convolutional neural network equipped with a global guidance block (GGB) and breast lesion boundary detection modules.
Our network outperforms other medical image segmentation methods and the recent semantic segmentation methods on breast ultrasound lesion segmentation.
arXiv Detail & Related papers (2021-04-05T13:15:22Z) - An Uncertainty-Driven GCN Refinement Strategy for Organ Segmentation [53.425900196763756]
We propose a segmentation refinement method based on uncertainty analysis and graph convolutional networks.
We employ the uncertainty levels of the convolutional network in a particular input volume to formulate a semi-supervised graph learning problem.
We show that our method outperforms the state-of-the-art CRF refinement method by improving the dice score by 1% for the pancreas and 2% for spleen.
arXiv Detail & Related papers (2020-12-06T18:55:07Z) - Weakly-supervised Learning For Catheter Segmentation in 3D Frustum
Ultrasound [74.22397862400177]
We propose a novel Frustum ultrasound based catheter segmentation method.
The proposed method achieved the state-of-the-art performance with an efficiency of 0.25 second per volume.
arXiv Detail & Related papers (2020-10-19T13:56:22Z) - KiU-Net: Towards Accurate Segmentation of Biomedical Images using
Over-complete Representations [59.65174244047216]
We propose an over-complete architecture (Ki-Net) which involves projecting the data onto higher dimensions.
This network, when augmented with U-Net, results in significant improvements in the case of segmenting small anatomical landmarks.
We evaluate the proposed method on the task of brain anatomy segmentation from 2D Ultrasound of preterm neonates.
arXiv Detail & Related papers (2020-06-08T18:59:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.