BAGNet: Bidirectional Aware Guidance Network for Malignant Breast
lesions Segmentation
- URL: http://arxiv.org/abs/2204.13342v1
- Date: Thu, 28 Apr 2022 08:28:06 GMT
- Title: BAGNet: Bidirectional Aware Guidance Network for Malignant Breast
lesions Segmentation
- Authors: Gongping Chen, Yuming Liu, Yu Dai, Jianxun Zhang, Liang Cui and
Xiaotao Yin
- Abstract summary: The bidirectional aware guidance network (BAGNet) is proposed to segment the malignant lesion from breast ultrasound images.
BAGNet captures the context between global (low-level) and local (high-level) features from the input coarse saliency map.
The introduction of the global feature map can reduce the interference of surrounding tissue (background) on the lesion regions.
- Score: 5.823080777200961
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Breast lesions segmentation is an important step of computer-aided diagnosis
system, and it has attracted much attention. However, accurate segmentation of
malignant breast lesions is a challenging task due to the effects of
heterogeneous structure and similar intensity distributions. In this paper, a
novel bidirectional aware guidance network (BAGNet) is proposed to segment the
malignant lesion from breast ultrasound images. Specifically, the bidirectional
aware guidance network is used to capture the context between global
(low-level) and local (high-level) features from the input coarse saliency map.
The introduction of the global feature map can reduce the interference of
surrounding tissue (background) on the lesion regions. To evaluate the
segmentation performance of the network, we compared with several
state-of-the-art medical image segmentation methods on the public breast
ultrasound dataset using six commonly used evaluation metrics. Extensive
experimental results indicate that our method achieves the most competitive
segmentation results on malignant breast ultrasound images.
Related papers
- Semi- and Weakly-Supervised Learning for Mammogram Mass Segmentation with Limited Annotations [49.33388736227072]
We propose a semi- and weakly-supervised learning framework for mass segmentation.
We use limited strongly-labeled samples and sufficient weakly-labeled samples to achieve satisfactory performance.
Experiments on CBIS-DDSM and INbreast datasets demonstrate the effectiveness of our method.
arXiv Detail & Related papers (2024-03-14T12:05:25Z) - Multi-task Explainable Skin Lesion Classification [54.76511683427566]
We propose a few-shot-based approach for skin lesions that generalizes well with few labelled data.
The proposed approach comprises a fusion of a segmentation network that acts as an attention module and classification network.
arXiv Detail & Related papers (2023-10-11T05:49:47Z) - Uncertainty Driven Bottleneck Attention U-net for Organ at Risk
Segmentation [20.865775626533434]
Organ at risk (OAR) segmentation in computed tomography (CT) imagery is a difficult task for automated segmentation methods.
We propose a multiple decoder U-net architecture and use the segmentation disagreement between the decoders as attention to the bottleneck of the network.
For accurate segmentation, we also proposed a CT intensity integrated regularization loss.
arXiv Detail & Related papers (2023-03-19T23:45:32Z) - Self-Supervised Correction Learning for Semi-Supervised Biomedical Image
Segmentation [84.58210297703714]
We propose a self-supervised correction learning paradigm for semi-supervised biomedical image segmentation.
We design a dual-task network, including a shared encoder and two independent decoders for segmentation and lesion region inpainting.
Experiments on three medical image segmentation datasets for different tasks demonstrate the outstanding performance of our method.
arXiv Detail & Related papers (2023-01-12T08:19:46Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
In this paper, we propose a novel reliable multi-scale wavelet-enhanced transformer network.
We develop a novel segmentation backbone that integrates a wavelet-enhanced feature extractor network and a multi-scale transformer module.
Our proposed method achieves better segmentation accuracy with a high degree of reliability as compared to other state-of-the-art segmentation approaches.
arXiv Detail & Related papers (2022-12-01T07:32:56Z) - Global Guidance Network for Breast Lesion Segmentation in Ultrasound
Images [84.03487786163781]
We develop a deep convolutional neural network equipped with a global guidance block (GGB) and breast lesion boundary detection modules.
Our network outperforms other medical image segmentation methods and the recent semantic segmentation methods on breast ultrasound lesion segmentation.
arXiv Detail & Related papers (2021-04-05T13:15:22Z) - Unsupervised Bidirectional Cross-Modality Adaptation via Deeply
Synergistic Image and Feature Alignment for Medical Image Segmentation [73.84166499988443]
We present a novel unsupervised domain adaptation framework, named as Synergistic Image and Feature Alignment (SIFA)
Our proposed SIFA conducts synergistic alignment of domains from both image and feature perspectives.
Experimental results on two different tasks demonstrate that our SIFA method is effective in improving segmentation performance on unlabeled target images.
arXiv Detail & Related papers (2020-02-06T13:49:47Z) - Weakly-Supervised Lesion Segmentation on CT Scans using Co-Segmentation [18.58056402884405]
Lesion segmentation on computed tomography (CT) scans is an important step for precisely monitoring changes in lesion/tumor growth.
Current practices rely on an imprecise substitute called response evaluation criteria in solid tumors.
This paper proposes a convolutional neural network based weakly-supervised lesion segmentation method.
arXiv Detail & Related papers (2020-01-23T15:15:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.