論文の概要: Federated Learning for UAV-Based Spectrum Sensing: Enhancing Accuracy Through SNR-Weighted Model Aggregation
- arxiv url: http://arxiv.org/abs/2411.11159v1
- Date: Sun, 17 Nov 2024 19:24:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-19 14:28:30.755748
- Title: Federated Learning for UAV-Based Spectrum Sensing: Enhancing Accuracy Through SNR-Weighted Model Aggregation
- Title(参考訳): UAVに基づくスペクトルセンシングのためのフェデレートラーニング:SNR重み付きモデルアグリゲーションによる精度向上
- Authors: Kürşat Tekbıyık, Güneş Karabulut Kurt, Antoine Lesage-Landry,
- Abstract要約: 無人航空機(UAV)ネットワークは、3D空間、その課題、そして機会に関して異なる視点を必要とする。
本稿では,その分散特性と計算能力の制限を考慮した,UAVネットワークにおけるスペクトルセンシングのためのFLに基づく手法を提案する。
我々はまた、UAVが観測した信号と雑音の比率を考慮し、グローバルモデルを得るフェデレーションアグリゲーション手法、すなわちFedSNRを開発した。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: The increasing demand for data usage in wireless communications requires using wider bands in the spectrum, especially for backhaul links. Yet, allocations in the spectrum for non-communication systems inhibit merging bands to achieve wider bandwidth. To overcome this issue, spectrum-sharing or opportunistic spectrum utilization by secondary users stands out as a promising solution. However, both approaches must minimize interference to primary users. Therefore, spectrum sensing becomes vital for such opportunistic usage, ensuring the proper operation of the primary users. Although this problem has been investigated for 2D networks, unmanned aerial vehicle (UAV) networks need different points of view concerning 3D space, its challenges, and opportunities. For this purpose, we propose a federated learning (FL)-based method for spectrum sensing in UAV networks to account for their distributed nature and limited computational capacity. FL enables local training without sharing raw data while guaranteeing the privacy of local users,lowering communication overhead, and increasing data diversity. Furthermore, we develop a federated aggregation method, namely FedSNR, that considers the signal-to-noise ratio observed by UAVs to acquire a global model. The numerical results show that the proposed architecture and the aggregation method outperform traditional methods.
- Abstract(参考訳): 無線通信におけるデータ利用の需要が高まっているため、特にバックホールリンクの帯域幅が広い。
しかし、非通信システムのスペクトルの割り当ては、マージ帯域を制限し、より広い帯域幅を実現する。
この問題を克服するためには、二次ユーザによるスペクトル共有や機会的スペクトル利用が有望なソリューションとして注目されている。
しかし、どちらのアプローチもプライマリユーザーへの干渉を最小限に抑えなければならない。
そのため、このような機会的利用にはスペクトルセンシングが不可欠となり、プライマリユーザの適切な操作が保証される。
この問題は2次元ネットワークで研究されているが、無人航空機(UAV)ネットワークは3次元空間、その課題、そして機会に関して異なる視点を必要とする。
そこで本研究では,UAVネットワークにおけるスペクトルセンサの分散特性と計算能力の制限を考慮したフェデレートラーニング(FL)に基づく手法を提案する。
FLは、ローカルユーザのプライバシを確保し、通信オーバーヘッドを低くし、データの多様性を高めながら、生データを共有せずに、ローカルトレーニングを可能にする。
さらに,UAVが観測した信号と雑音の比を考慮し,グローバルモデルを得るフェデレーションアグリゲーション手法であるFedSNRを開発した。
数値計算の結果,提案手法は従来の手法よりも優れていた。
関連論文リスト
- Collaborative Wideband Spectrum Sensing and Scheduling for Networked
UAVs in UTM Systems [2.755290959487378]
ネットワーク型無人航空機(UAV)の協調広帯域スペクトルセンシングとスケジューリングのためのデータ駆動型フレームワークを提案する。
スペクトルスケジューリングフェーズにおいて、検出されたスペクトル穴を二次ユーザ(UAV)に動的に割り当てるために強化学習(RL)ソリューションを利用する。
この評価手法は、航空機用ML/AIベースのスペクトル管理ソリューションの開発に使用できる大規模なスペクトルデータセットを生成するフレキシブルなフレームワークを提供する。
論文 参考訳(メタデータ) (2023-08-09T16:08:44Z) - Deep Reinforcement Learning for Interference Management in UAV-based 3D
Networks: Potentials and Challenges [137.47736805685457]
チャネル情報を知らなくても干渉を効果的に軽減できることを示す。
干渉を利用することにより、提案された解決策は民間UAVの継続的な成長を可能にする。
論文 参考訳(メタデータ) (2023-05-11T18:06:46Z) - FLCC: Efficient Distributed Federated Learning on IoMT over CSMA/CA [0.0]
フェデレートラーニング(FL)は、プライバシー保護のための有望なアプローチとして登場した。
本稿では,アドホックネットワーク上で遠隔医療システムを改善するアプリケーションにおけるFLの性能について検討する。
ネットワーク性能を評価するための指標として,1) 干渉を最小限に抑えながら伝送を成功させる確率,2) 精度と損失の点で分散FLモデルの性能を示す。
論文 参考訳(メタデータ) (2023-03-29T16:36:42Z) - Disentangled Representation Learning for RF Fingerprint Extraction under
Unknown Channel Statistics [77.13542705329328]
本稿では,まず,不整合表現学習(DRL)の枠組みを提案し,入力信号を逆学習によりデバイス関連成分とデバイス関連成分に分解する。
提案フレームワークにおける暗黙的なデータ拡張は、デバイス非関連チャネル統計の過度な適合を避けるために、RFF抽出器に正規化を課す。
実験により、DR-RFFと呼ばれる提案手法は、未知の複雑な伝播環境に対する一般化可能性の観点から従来の手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2022-08-04T15:46:48Z) - Multi-task Learning Approach for Modulation and Wireless Signal
Classification for 5G and Beyond: Edge Deployment via Model Compression [1.218340575383456]
将来的な通信網は、異種無線デバイスの成長に対応するために、少ないスペクトルに対処する必要がある。
我々は、深層ニューラルネットワークに基づくマルチタスク学習フレームワークの可能性を利用して、変調と信号分類タスクを同時に学習する。
公共利用のための包括的ヘテロジニアス無線信号データセットを提供する。
論文 参考訳(メタデータ) (2022-02-26T14:51:02Z) - Robust Semi-supervised Federated Learning for Images Automatic
Recognition in Internet of Drones [57.468730437381076]
プライバシー保護型UAV画像認識のための半教師付きフェデレートラーニング(SSFL)フレームワークを提案する。
異なるカメラモジュールを使用したUAVによって収集されたローカルデータの数、特徴、分布には大きな違いがある。
本稿では,クライアントがトレーニングに参加する頻度,すなわちFedFreqアグリゲーションルールに基づくアグリゲーションルールを提案する。
論文 参考訳(メタデータ) (2022-01-03T16:49:33Z) - Three-Way Deep Neural Network for Radio Frequency Map Generation and
Source Localization [67.93423427193055]
空間、時間、周波数領域にわたる無線スペクトルのモニタリングは、5Gと6G以上の通信技術において重要な特徴となる。
本稿では,空間領域全体にわたる不規則分散計測を補間するGAN(Generative Adversarial Network)機械学習モデルを提案する。
論文 参考訳(メタデータ) (2021-11-23T22:25:10Z) - Federated Dynamic Spectrum Access [29.302039892247787]
動的スペクトラムアクセス(DSA)タスクのためのフェデレートラーニング(FL)ベースのフレームワークを提案する。
FLは、異種データ分散下でネットワーク端末のプライバシを保護できる分散機械学習フレームワークである。
論文 参考訳(メタデータ) (2021-06-28T20:49:41Z) - Distributed Conditional Generative Adversarial Networks (GANs) for
Data-Driven Millimeter Wave Communications in UAV Networks [116.94802388688653]
無人航空機(UAV)無線ネットワークにおけるミリ波(mmWave)通信のための,データ駆動型空対地(A2G)チャネル推定手法を提案する。
実効的なチャネル推定手法を開発し、各UAVは、各ビームフォーミング方向に沿って条件付き生成対向ネットワーク(CGAN)を介してスタンドアロンチャネルモデルを訓練することができる。
分散CGANアーキテクチャに基づく協調的なフレームワークを開発し、各UAVがmmWaveチャネルの分布を協調的に学習できるようにする。
論文 参考訳(メタデータ) (2021-02-02T20:56:46Z) - Federated Learning in the Sky: Joint Power Allocation and Scheduling
with UAV Swarms [98.78553146823829]
無人航空機(UAV)は様々なタスクを実行するために機械学習(ML)を利用する必要がある。
本稿では,UAVスワム内に分散学習(FL)アルゴリズムを実装するための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2020-02-19T14:04:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。