DeepSPV: An Interpretable Deep Learning Pipeline for 3D Spleen Volume Estimation from 2D Ultrasound Images
- URL: http://arxiv.org/abs/2411.11190v1
- Date: Sun, 17 Nov 2024 22:43:07 GMT
- Title: DeepSPV: An Interpretable Deep Learning Pipeline for 3D Spleen Volume Estimation from 2D Ultrasound Images
- Authors: Zhen Yuan, David Stojanovski, Lei Li, Alberto Gomez, Haran Jogeesvaran, Esther Puyol-Antón, Baba Inusa, Andrew P. King,
- Abstract summary: Splenomegaly is an important clinical indicator for various associated medical conditions, such as sickle cell disease (SCD)
In this work, we introduce a deep learning pipeline, DeepSPV, for precise spleen volume estimation from single or dual 2D ultrasound images.
- Score: 7.727342487565146
- License:
- Abstract: Splenomegaly, the enlargement of the spleen, is an important clinical indicator for various associated medical conditions, such as sickle cell disease (SCD). Spleen length measured from 2D ultrasound is the most widely used metric for characterising spleen size. However, it is still considered a surrogate measure, and spleen volume remains the gold standard for assessing spleen size. Accurate spleen volume measurement typically requires 3D imaging modalities, such as computed tomography or magnetic resonance imaging, but these are not widely available, especially in the Global South which has a high prevalence of SCD. In this work, we introduce a deep learning pipeline, DeepSPV, for precise spleen volume estimation from single or dual 2D ultrasound images. The pipeline involves a segmentation network and a variational autoencoder for learning low-dimensional representations from the estimated segmentations. We investigate three approaches for spleen volume estimation and our best model achieves 86.62%/92.5% mean relative volume accuracy (MRVA) under single-view/dual-view settings, surpassing the performance of human experts. In addition, the pipeline can provide confidence intervals for the volume estimates as well as offering benefits in terms of interpretability, which further support clinicians in decision-making when identifying splenomegaly. We evaluate the full pipeline using a highly realistic synthetic dataset generated by a diffusion model, achieving an overall MRVA of 83.0% from a single 2D ultrasound image. Our proposed DeepSPV is the first work to use deep learning to estimate 3D spleen volume from 2D ultrasound images and can be seamlessly integrated into the current clinical workflow for spleen assessment.
Related papers
- Deep Learning Framework for Spleen Volume Estimation from 2D
Cross-sectional Views [3.8212870622288744]
We describe a variational autoencoder-based framework to measure spleen volume from single- or dual-view 2D segmentations.
Our best model achieved mean relative volume accuracies of 86.62% and 92.58% for single- and dual-view segmentations.
arXiv Detail & Related papers (2023-08-15T20:58:42Z) - TriadNet: Sampling-free predictive intervals for lesional volume in 3D
brain MR images [1.2234742322758418]
We propose TriadNet, a segmentation approach relying on a multi-head CNN architecture, which provides both the lesion volumes and the associated predictive intervals simultaneously.
We demonstrate its superiority over other solutions on BraTS 2021, a large-scale MRI glioblastoma image database.
arXiv Detail & Related papers (2023-07-28T15:56:04Z) - Localizing Scan Targets from Human Pose for Autonomous Lung Ultrasound
Imaging [61.60067283680348]
With the advent of COVID-19 global pandemic, there is a need to fully automate ultrasound imaging.
We propose a vision-based, data driven method that incorporates learning-based computer vision techniques.
Our method attains an accuracy level of 15.52 (9.47) mm for probe positioning and 4.32 (3.69)deg for probe orientation, with a success rate above 80% under an error threshold of 25mm for all scan targets.
arXiv Detail & Related papers (2022-12-15T14:34:12Z) - Moving from 2D to 3D: volumetric medical image classification for rectal
cancer staging [62.346649719614]
preoperative discrimination between T2 and T3 stages is arguably both the most challenging and clinically significant task for rectal cancer treatment.
We present a volumetric convolutional neural network to accurately discriminate T2 from T3 stage rectal cancer with rectal MR volumes.
arXiv Detail & Related papers (2022-09-13T07:10:14Z) - Medical Instrument Segmentation in 3D US by Hybrid Constrained
Semi-Supervised Learning [62.13520959168732]
We propose a semi-supervised learning framework for instrument segmentation in 3D US.
To achieve the SSL learning, a Dual-UNet is proposed to segment the instrument.
Our proposed method achieves Dice score of about 68.6%-69.1% and the inference time of about 1 sec. per volume.
arXiv Detail & Related papers (2021-07-30T07:59:45Z) - End-to-end Ultrasound Frame to Volume Registration [9.738024231762465]
We propose an end-to-end frame-to-volume registration network (FVR-Net) for 2D and 3D registration.
Our model shows superior efficiency for real-time interventional guidance with highly competitive registration accuracy.
arXiv Detail & Related papers (2021-07-14T01:59:42Z) - Revisiting 3D Context Modeling with Supervised Pre-training for
Universal Lesion Detection in CT Slices [48.85784310158493]
We propose a Modified Pseudo-3D Feature Pyramid Network (MP3D FPN) to efficiently extract 3D context enhanced 2D features for universal lesion detection in CT slices.
With the novel pre-training method, the proposed MP3D FPN achieves state-of-the-art detection performance on the DeepLesion dataset.
The proposed 3D pre-trained weights can potentially be used to boost the performance of other 3D medical image analysis tasks.
arXiv Detail & Related papers (2020-12-16T07:11:16Z) - Deep Learning for Automatic Spleen Length Measurement in Sickle Cell
Disease Patients [1.739079346425631]
Sickle Cell Disease (SCD) is one of the most common genetic diseases in the world.
Current workflow to measure spleen size includes palpation, possibly followed by manual length measurement in 2D ultrasound imaging.
We investigate the use of deep learning to perform automatic estimation of spleen length from ultrasound images.
arXiv Detail & Related papers (2020-09-06T10:47:49Z) - Deep Volumetric Universal Lesion Detection using Light-Weight Pseudo 3D
Convolution and Surface Point Regression [23.916776570010285]
Computer-aided lesion/significant-findings detection techniques are at the core of medical imaging.
We propose a novel deep anchor-free one-stage VULD framework that incorporates (1) P3DC operators to recycle the architectural configurations and pre-trained weights from the off-the-shelf 2D networks.
New SPR method to effectively regress the 3D lesion spatial extents by pinpointing their representative key points on lesion surfaces.
arXiv Detail & Related papers (2020-08-30T19:42:06Z) - Modelling the Distribution of 3D Brain MRI using a 2D Slice VAE [66.63629641650572]
We propose a method to model 3D MR brain volumes distribution by combining a 2D slice VAE with a Gaussian model that captures the relationships between slices.
We also introduce a novel evaluation method for generated volumes that quantifies how well their segmentations match those of true brain anatomy.
arXiv Detail & Related papers (2020-07-09T13:23:15Z) - Hybrid Attention for Automatic Segmentation of Whole Fetal Head in
Prenatal Ultrasound Volumes [52.53375964591765]
We propose the first fully-automated solution to segment the whole fetal head in US volumes.
The segmentation task is firstly formulated as an end-to-end volumetric mapping under an encoder-decoder deep architecture.
We then combine the segmentor with a proposed hybrid attention scheme (HAS) to select discriminative features and suppress the non-informative volumetric features.
arXiv Detail & Related papers (2020-04-28T14:43:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.