Validation tests of Gaussian boson samplers with photon-number resolving detectors
- URL: http://arxiv.org/abs/2411.11228v1
- Date: Mon, 18 Nov 2024 01:41:22 GMT
- Title: Validation tests of Gaussian boson samplers with photon-number resolving detectors
- Authors: Alexander S. Dellios, Margaret D. Reid, Peter D. Drummond,
- Abstract summary: We apply phase-space simulation methods to partially verify recent experiments on Gaussian boson sampling (GBS) implementing photon-number resolving (PNR) detectors.
We show that the data as a whole shows discrepancies with theoretical predictions for perfect squeezing.
We suggest that such validation tests could form the basis of feedback methods to improve GBS quantum computer experiments.
- Score: 44.99833362998488
- License:
- Abstract: An important challenge with the current generation of noisy, large-scale quantum computers is the question of validation. Does the hardware generate correct answers? If not, what are the errors? This issue is often combined with questions of computational advantage, but it is a fundamentally distinct issue. In current experiments, complete validation of the output statistics is generally not possible because it is exponentially hard to do so. Here, we apply phase-space simulation methods to partially verify recent experiments on Gaussian boson sampling (GBS) implementing photon-number resolving (PNR) detectors. The positive-P phase-space distribution is employed, as it uses probabilistic sampling to reduce complexity. It is $10^{18}$ times faster than direct classical simulation for experiments on $288$ modes where quantum computational advantage is claimed. When combined with binning and marginalization to improve statistics, multiple validation tests are efficiently computable, of which some tests can be carried out on experimental data. We show that the data as a whole shows discrepancies with theoretical predictions for perfect squeezing. However, a small modification of the GBS parameters greatly improves agreement. Hence, we suggest that such validation tests could form the basis of feedback methods to improve GBS quantum computer experiments.
Related papers
- Sample space filling analysis for boson sampling validation [0.0]
We show that due to the intrinsic nature of the boson sampling wave function, its filling behavior can be computationally efficiently distinguished from classically simulated cases.
We propose a new validation protocol based on the sample space filling analysis and test it for problems of up to $20$ photons injected into a $400$-mode interferometer.
arXiv Detail & Related papers (2024-11-21T12:39:37Z) - Incoherent Approximation of Leakage in Quantum Error Correction [0.03922370499388702]
Quantum error correcting codes typically do not account for quantum state transitions - leakage - out of the computational subspace.
We introduce a Random Phase Approximation (RPA) on quantum channels that preserves the incoherence between the computational and leakage subspaces.
We show that RPA yields accurate error correction statistics in the repetition and surface codes with physical error parameters.
arXiv Detail & Related papers (2023-12-16T00:52:23Z) - Precise Error Rates for Computationally Efficient Testing [75.63895690909241]
We revisit the question of simple-versus-simple hypothesis testing with an eye towards computational complexity.
An existing test based on linear spectral statistics achieves the best possible tradeoff curve between type I and type II error rates.
arXiv Detail & Related papers (2023-11-01T04:41:16Z) - Gaussian boson sampling validation via detector binning [0.0]
We propose binned-detector probability distributions as a suitable quantity to statistically validate GBS experiments.
We show how to compute such distributions by leveraging their connection with their respective characteristic function.
We also illustrate how binned-detector probability distributions behave when Haar-averaged over all possible interferometric networks.
arXiv Detail & Related papers (2023-10-27T12:55:52Z) - Sequential Kernelized Independence Testing [101.22966794822084]
We design sequential kernelized independence tests inspired by kernelized dependence measures.
We demonstrate the power of our approaches on both simulated and real data.
arXiv Detail & Related papers (2022-12-14T18:08:42Z) - Importance sampling for stochastic quantum simulations [68.8204255655161]
We introduce the qDrift protocol, which builds random product formulas by sampling from the Hamiltonian according to the coefficients.
We show that the simulation cost can be reduced while achieving the same accuracy, by considering the individual simulation cost during the sampling stage.
Results are confirmed by numerical simulations performed on a lattice nuclear effective field theory.
arXiv Detail & Related papers (2022-12-12T15:06:32Z) - Validation tests of GBS quantum computers give evidence for quantum
advantage with a decoherent target [62.997667081978825]
We use positive-P phase-space simulations of grouped count probabilities as a fingerprint for verifying multi-mode data.
We show how one can disprove faked data, and apply this to a classical count algorithm.
arXiv Detail & Related papers (2022-11-07T12:00:45Z) - Bosonic field digitization for quantum computers [62.997667081978825]
We address the representation of lattice bosonic fields in a discretized field amplitude basis.
We develop methods to predict error scaling and present efficient qubit implementation strategies.
arXiv Detail & Related papers (2021-08-24T15:30:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.