EXCON: Extreme Instance-based Contrastive Representation Learning of Severely Imbalanced Multivariate Time Series for Solar Flare Prediction
- URL: http://arxiv.org/abs/2411.11249v1
- Date: Mon, 18 Nov 2024 02:36:19 GMT
- Title: EXCON: Extreme Instance-based Contrastive Representation Learning of Severely Imbalanced Multivariate Time Series for Solar Flare Prediction
- Authors: Onur Vural, Shah Muhammad Hamdi, Soukaina Filali Boubrahimi,
- Abstract summary: This work presents EXCON, a contrastive representation learning framework designed to enhance classification performance amidst such imbalances.
Results include evaluations on the benchmark solar flare dataset and multiple time series archive datasets with binary and multiclass labels.
- Score: 1.024113475677323
- License:
- Abstract: In heliophysics research, predicting solar flares is crucial due to their potential to impact both space-based systems and Earth's infrastructure substantially. Magnetic field data from solar active regions, recorded by solar imaging observatories, are transformed into multivariate time series to enable solar flare prediction using temporal window-based analysis. In the realm of multivariate time series-driven solar flare prediction, addressing severe class imbalance with effective strategies for multivariate time series representation learning is key to developing robust predictive models. Traditional methods often struggle with overfitting to the majority class in prediction tasks where major solar flares are infrequent. This work presents EXCON, a contrastive representation learning framework designed to enhance classification performance amidst such imbalances. EXCON operates through four stages: obtaining core features from multivariate time series data; selecting distinctive contrastive representations for each class to maximize inter-class separation; training a temporal feature embedding module with a custom extreme reconstruction loss to minimize intra-class variation; and applying a classifier to the learned embeddings for robust classification. The proposed method leverages contrastive learning principles to map similar instances closer in the feature space while distancing dissimilar ones, a strategy not extensively explored in solar flare prediction tasks. This approach not only addresses class imbalance but also offers a versatile solution applicable to univariate and multivariate time series across binary and multiclass classification problems. Experimental results, including evaluations on the benchmark solar flare dataset and multiple time series archive datasets with binary and multiclass labels, demonstrate EXCON's efficacy in enhancing classification performance.
Related papers
- Contrastive Representation Learning for Predicting Solar Flares from Extremely Imbalanced Multivariate Time Series Data [1.024113475677323]
Major solar flares are abrupt surges in the Sun's magnetic flux, presenting significant risks to technological infrastructure.
In this paper, we introduce CONTREX, a novel contrastive representation learning approach for multivariate time series data.
Our approach shows promising solar flare prediction results on the Space Weather Analytics for Solar Flares (SWAN-SF) multivariate time series benchmark dataset.
arXiv Detail & Related papers (2024-10-01T01:20:47Z) - Enhancing Multivariate Time Series-based Solar Flare Prediction with Multifaceted Preprocessing and Contrastive Learning [0.9374652839580181]
Accurate solar flare prediction is crucial due to the significant risks that intense solar flares pose to astronauts, space equipment, and satellite communication systems.
Our research enhances solar flare prediction by utilizing advanced data preprocessing and classification methods.
arXiv Detail & Related papers (2024-09-21T05:00:34Z) - Towards Hybrid Embedded Feature Selection and Classification Approach with Slim-TSF [0.0]
This study aims to uncover hidden relationships and the evolutionary characteristics of solar flares and their source regions.
Preliminary findings indicate a notable improvement, with an average increase of 5% in both the True Skill Statistic (TSS) and Heidke Skill Score (HSS)
arXiv Detail & Related papers (2024-09-06T18:12:05Z) - Entropy Guided Extrapolative Decoding to Improve Factuality in Large Language Models [55.45444773200529]
Large language models (LLMs) exhibit impressive natural language capabilities but suffer from hallucination.
Recent work has focused on decoding techniques to improve factuality during inference.
arXiv Detail & Related papers (2024-04-14T19:45:35Z) - Active Region-based Flare Forecasting with Sliding Window Multivariate
Time Series Forest Classifiers [0.0]
We bridge the gap between complex, less understandable black-box models used for high-dimensional data and the exploration of relevant sub-intervals.
Our findings demonstrate that our sliding-window time series forest classifier performs effectively in solar flare prediction.
arXiv Detail & Related papers (2024-02-05T19:34:12Z) - OpenSTL: A Comprehensive Benchmark of Spatio-Temporal Predictive
Learning [67.07363529640784]
We propose OpenSTL to categorize prevalent approaches into recurrent-based and recurrent-free models.
We conduct standard evaluations on datasets across various domains, including synthetic moving object trajectory, human motion, driving scenes, traffic flow and forecasting weather.
We find that recurrent-free models achieve a good balance between efficiency and performance than recurrent models.
arXiv Detail & Related papers (2023-06-20T03:02:14Z) - Improving day-ahead Solar Irradiance Time Series Forecasting by
Leveraging Spatio-Temporal Context [46.72071291175356]
Solar power harbors immense potential in mitigating climate change by substantially reducing CO$_2$ emissions.
However, the inherent variability of solar irradiance poses a significant challenge for seamlessly integrating solar power into the electrical grid.
In this paper, we put forth a deep learning architecture designed to harnesstemporal context using satellite data.
arXiv Detail & Related papers (2023-06-01T19:54:39Z) - A Comparative Study on Generative Models for High Resolution Solar
Observation Imaging [59.372588316558826]
This work investigates capabilities of current state-of-the-art generative models to accurately capture the data distribution behind observed solar activity states.
Using distributed training on supercomputers, we are able to train generative models for up to 1024x1024 resolution that produce high quality samples indistinguishable to human experts.
arXiv Detail & Related papers (2023-04-14T14:40:32Z) - SatMAE: Pre-training Transformers for Temporal and Multi-Spectral
Satellite Imagery [74.82821342249039]
We present SatMAE, a pre-training framework for temporal or multi-spectral satellite imagery based on Masked Autoencoder (MAE)
To leverage temporal information, we include a temporal embedding along with independently masking image patches across time.
arXiv Detail & Related papers (2022-07-17T01:35:29Z) - Low Dimensional Convolutional Neural Network For Solar Flares GOES Time
Series Classification [0.0]
We present a CNN to forecast solar flare events probability occurrence of M and X classes at 1,3,6,12,24,48,72,96 hours time frame.
Geostationary Operational Environmental Satellite (GOES) X-ray time series data, ranged between July 1998 and January 2019.
arXiv Detail & Related papers (2021-01-29T12:55:57Z) - SMART: Simultaneous Multi-Agent Recurrent Trajectory Prediction [72.37440317774556]
We propose advances that address two key challenges in future trajectory prediction.
multimodality in both training data and predictions and constant time inference regardless of number of agents.
arXiv Detail & Related papers (2020-07-26T08:17:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.