Graph Retention Networks for Dynamic Graphs
- URL: http://arxiv.org/abs/2411.11259v1
- Date: Mon, 18 Nov 2024 03:28:11 GMT
- Title: Graph Retention Networks for Dynamic Graphs
- Authors: Qian Chang, Xia Li, Xiufeng Cheng,
- Abstract summary: We propose Graph Retention Network as a unified architecture for deep learning on dynamic graphs.
The GRN extends the core computational manner of retention to dynamic graph data as graph retention.
Experiments conducted on benchmark datasets present the superior performance of the GRN in both edge-level prediction and node-level classification tasks.
- Score: 4.4053348026380235
- License:
- Abstract: In this work, we propose Graph Retention Network as a unified architecture for deep learning on dynamic graphs. The GRN extends the core computational manner of retention to dynamic graph data as graph retention, which empowers the model with three key computational paradigms that enable training parallelism, $O(1)$ low-cost inference, and long-term batch training. This architecture achieves an optimal balance of effectiveness, efficiency, and scalability. Extensive experiments conducted on benchmark datasets present the superior performance of the GRN in both edge-level prediction and node-level classification tasks. Our architecture achieves cutting-edge results while maintaining lower training latency, reduced GPU memory consumption, and up to an 86.7x improvement in inference throughput compared to baseline models. The GRNs have demonstrated strong potential to become a widely adopted architecture for dynamic graph learning tasks. Code will be available at https://github.com/Chandler-Q/GraphRetentionNet.
Related papers
- Efficient and Effective Implicit Dynamic Graph Neural Network [42.49148111696576]
We present Implicit Dynamic Graph Neural Network (IDGNN) a novel implicit neural network for dynamic graphs.
A key characteristic of IDGNN is that it demonstrably is well-posed, i.e., it is theoretically guaranteed to have a fixed-point representation.
arXiv Detail & Related papers (2024-06-25T19:07:21Z) - Gradient Transformation: Towards Efficient and Model-Agnostic Unlearning for Dynamic Graph Neural Networks [66.70786325911124]
Graph unlearning has emerged as an essential tool for safeguarding user privacy and mitigating the negative impacts of undesirable data.
With the increasing prevalence of DGNNs, it becomes imperative to investigate the implementation of dynamic graph unlearning.
We propose an effective, efficient, model-agnostic, and post-processing method to implement DGNN unlearning.
arXiv Detail & Related papers (2024-05-23T10:26:18Z) - DGC: Training Dynamic Graphs with Spatio-Temporal Non-Uniformity using
Graph Partitioning by Chunks [13.279145021338534]
Dynamic Graph Neural Network (DGNN) has shown a strong capability of learning dynamic graphs by exploiting both spatial and temporal features.
We propose DGC, a distributed DGNN training system that achieves a 1.25x - 7.52x speedup over the state-of-the-art in our testbed.
arXiv Detail & Related papers (2023-09-07T07:12:59Z) - EGRC-Net: Embedding-induced Graph Refinement Clustering Network [66.44293190793294]
We propose a novel graph clustering network called Embedding-Induced Graph Refinement Clustering Network (EGRC-Net)
EGRC-Net effectively utilizes the learned embedding to adaptively refine the initial graph and enhance the clustering performance.
Our proposed methods consistently outperform several state-of-the-art approaches.
arXiv Detail & Related papers (2022-11-19T09:08:43Z) - A Comprehensive Study on Large-Scale Graph Training: Benchmarking and
Rethinking [124.21408098724551]
Large-scale graph training is a notoriously challenging problem for graph neural networks (GNNs)
We present a new ensembling training manner, named EnGCN, to address the existing issues.
Our proposed method has achieved new state-of-the-art (SOTA) performance on large-scale datasets.
arXiv Detail & Related papers (2022-10-14T03:43:05Z) - Comprehensive Graph Gradual Pruning for Sparse Training in Graph Neural
Networks [52.566735716983956]
We propose a graph gradual pruning framework termed CGP to dynamically prune GNNs.
Unlike LTH-based methods, the proposed CGP approach requires no re-training, which significantly reduces the computation costs.
Our proposed strategy greatly improves both training and inference efficiency while matching or even exceeding the accuracy of existing methods.
arXiv Detail & Related papers (2022-07-18T14:23:31Z) - Efficient Dynamic Graph Representation Learning at Scale [66.62859857734104]
We propose Efficient Dynamic Graph lEarning (EDGE), which selectively expresses certain temporal dependency via training loss to improve the parallelism in computations.
We show that EDGE can scale to dynamic graphs with millions of nodes and hundreds of millions of temporal events and achieve new state-of-the-art (SOTA) performance.
arXiv Detail & Related papers (2021-12-14T22:24:53Z) - Dynamic Graph Representation Learning via Graph Transformer Networks [41.570839291138114]
We propose a Transformer-based dynamic graph learning method named Dynamic Graph Transformer (DGT)
DGT has spatial-temporal encoding to effectively learn graph topology and capture implicit links.
We show that DGT presents superior performance compared with several state-of-the-art baselines.
arXiv Detail & Related papers (2021-11-19T21:44:23Z) - SPA-GCN: Efficient and Flexible GCN Accelerator with an Application for
Graph Similarity Computation [7.54579279348595]
We propose a flexible architecture called SPA-GCN for accelerating Graph Convolutional Networks (GCN) on graphs.
We show that SPA-GCN can deliver a high speedup compared to a multi-core CPU implementation and a GPU implementation.
arXiv Detail & Related papers (2021-11-10T20:47:57Z) - Temporal Graph Networks for Deep Learning on Dynamic Graphs [4.5158585619109495]
We present Temporal Graph Networks (TGNs), a generic, efficient framework for deep learning on dynamic graphs represented as sequences of timed events.
Thanks to a novel combination of memory modules and graph-based operators, TGNs are able to significantly outperform previous approaches being at the same time more computationally efficient.
arXiv Detail & Related papers (2020-06-18T16:06:18Z) - GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training [62.73470368851127]
Graph representation learning has emerged as a powerful technique for addressing real-world problems.
We design Graph Contrastive Coding -- a self-supervised graph neural network pre-training framework.
We conduct experiments on three graph learning tasks and ten graph datasets.
arXiv Detail & Related papers (2020-06-17T16:18:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.