Gradient Transformation: Towards Efficient and Model-Agnostic Unlearning for Dynamic Graph Neural Networks
- URL: http://arxiv.org/abs/2405.14407v1
- Date: Thu, 23 May 2024 10:26:18 GMT
- Title: Gradient Transformation: Towards Efficient and Model-Agnostic Unlearning for Dynamic Graph Neural Networks
- Authors: He Zhang, Bang Wu, Xiangwen Yang, Xingliang Yuan, Chengqi Zhang, Shirui Pan,
- Abstract summary: Graph unlearning has emerged as an essential tool for safeguarding user privacy and mitigating the negative impacts of undesirable data.
With the increasing prevalence of DGNNs, it becomes imperative to investigate the implementation of dynamic graph unlearning.
We propose an effective, efficient, model-agnostic, and post-processing method to implement DGNN unlearning.
- Score: 66.70786325911124
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph unlearning has emerged as an essential tool for safeguarding user privacy and mitigating the negative impacts of undesirable data. Meanwhile, the advent of dynamic graph neural networks (DGNNs) marks a significant advancement due to their superior capability in learning from dynamic graphs, which encapsulate spatial-temporal variations in diverse real-world applications (e.g., traffic forecasting). With the increasing prevalence of DGNNs, it becomes imperative to investigate the implementation of dynamic graph unlearning. However, current graph unlearning methodologies are designed for GNNs operating on static graphs and exhibit limitations including their serving in a pre-processing manner and impractical resource demands. Furthermore, the adaptation of these methods to DGNNs presents non-trivial challenges, owing to the distinctive nature of dynamic graphs. To this end, we propose an effective, efficient, model-agnostic, and post-processing method to implement DGNN unlearning. Specifically, we first define the unlearning requests and formulate dynamic graph unlearning in the context of continuous-time dynamic graphs. After conducting a role analysis on the unlearning data, the remaining data, and the target DGNN model, we propose a method called Gradient Transformation and a loss function to map the unlearning request to the desired parameter update. Evaluations on six real-world datasets and state-of-the-art DGNN backbones demonstrate its effectiveness (e.g., limited performance drop even obvious improvement) and efficiency (e.g., at most 7.23$\times$ speed-up) outperformance, and potential advantages in handling future unlearning requests (e.g., at most 32.59$\times$ speed-up).
Related papers
- Node-Time Conditional Prompt Learning In Dynamic Graphs [14.62182210205324]
We propose DYGPROMPT, a novel pre-training and prompt learning framework for dynamic graph modeling.
We recognize that node and time features mutually characterize each other, and propose dual condition-nets to model the evolving node-time patterns in downstream tasks.
arXiv Detail & Related papers (2024-05-22T19:10:24Z) - A survey of dynamic graph neural networks [26.162035361191805]
Graph neural networks (GNNs) have emerged as a powerful tool for effectively mining and learning from graph-structured data.
This paper provides a comprehensive review of the fundamental concepts, key techniques, and state-of-the-art dynamic GNN models.
arXiv Detail & Related papers (2024-04-28T15:07:48Z) - GIF: A General Graph Unlearning Strategy via Influence Function [63.52038638220563]
Graph Influence Function (GIF) is a model-agnostic unlearning method that can efficiently and accurately estimate parameter changes in response to a $epsilon$-mass perturbation in deleted data.
We conduct extensive experiments on four representative GNN models and three benchmark datasets to justify GIF's superiority in terms of unlearning efficacy, model utility, and unlearning efficiency.
arXiv Detail & Related papers (2023-04-06T03:02:54Z) - EasyDGL: Encode, Train and Interpret for Continuous-time Dynamic Graph Learning [92.71579608528907]
This paper aims to design an easy-to-use pipeline (termed as EasyDGL) composed of three key modules with both strong ability fitting and interpretability.
EasyDGL can effectively quantify the predictive power of frequency content that a model learn from the evolving graph data.
arXiv Detail & Related papers (2023-03-22T06:35:08Z) - Spiking Variational Graph Auto-Encoders for Efficient Graph
Representation Learning [10.65760757021534]
We propose an SNN-based deep generative method, namely the Spiking Variational Graph Auto-Encoders (S-VGAE) for efficient graph representation learning.
We conduct link prediction experiments on multiple benchmark graph datasets, and the results demonstrate that our model consumes significantly lower energy with the performances superior or comparable to other ANN- and SNN-based methods for graph representation learning.
arXiv Detail & Related papers (2022-10-24T12:54:41Z) - MentorGNN: Deriving Curriculum for Pre-Training GNNs [61.97574489259085]
We propose an end-to-end model named MentorGNN that aims to supervise the pre-training process of GNNs across graphs.
We shed new light on the problem of domain adaption on relational data (i.e., graphs) by deriving a natural and interpretable upper bound on the generalization error of the pre-trained GNNs.
arXiv Detail & Related papers (2022-08-21T15:12:08Z) - Efficient Dynamic Graph Representation Learning at Scale [66.62859857734104]
We propose Efficient Dynamic Graph lEarning (EDGE), which selectively expresses certain temporal dependency via training loss to improve the parallelism in computations.
We show that EDGE can scale to dynamic graphs with millions of nodes and hundreds of millions of temporal events and achieve new state-of-the-art (SOTA) performance.
arXiv Detail & Related papers (2021-12-14T22:24:53Z) - Learning to Evolve on Dynamic Graphs [5.1521870302904125]
Learning to Evolve on Dynamic Graphs (LEDG) is a novel algorithm that jointly learns graph information and time information.
LEDG is model-agnostic and can train any message passing based graph neural network (GNN) on dynamic graphs.
arXiv Detail & Related papers (2021-11-13T04:09:30Z) - GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training [62.73470368851127]
Graph representation learning has emerged as a powerful technique for addressing real-world problems.
We design Graph Contrastive Coding -- a self-supervised graph neural network pre-training framework.
We conduct experiments on three graph learning tasks and ten graph datasets.
arXiv Detail & Related papers (2020-06-17T16:18:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.