Accelerating spherical K-means clustering for large-scale sparse document data
- URL: http://arxiv.org/abs/2411.11300v1
- Date: Mon, 18 Nov 2024 05:50:58 GMT
- Title: Accelerating spherical K-means clustering for large-scale sparse document data
- Authors: Kazuo Aoyama, Kazumi Saito,
- Abstract summary: This paper presents an accelerated spherical K-means clustering algorithm for large-scale and high-dimensional sparse document data sets.
We experimentally demonstrate that our algorithm efficiently achieves superior speed performance in large-scale documents compared with algorithms using the state-of-the-art techniques.
- Score: 0.7366405857677226
- License:
- Abstract: This paper presents an accelerated spherical K-means clustering algorithm for large-scale and high-dimensional sparse document data sets. We design an algorithm working in an architecture-friendly manner (AFM), which is a procedure of suppressing performance-degradation factors such as the numbers of instructions, branch mispredictions, and cache misses in CPUs of a modern computer system. For the AFM operation, we leverage unique universal characteristics (UCs) of a data-object and a cluster's mean set, which are skewed distributions on data relationships such as Zipf's law and a feature-value concentration phenomenon. The UCs indicate that the most part of the number of multiplications for similarity calculations is executed regarding terms with high document frequencies (df) and the most part of a similarity between an object- and a mean-feature vector is obtained by the multiplications regarding a few high mean-feature values. Our proposed algorithm applies an inverted-index data structure to a mean set, extracts the specific region with high-df terms and high mean-feature values in the mean-inverted index by newly introduced two structural parameters, and exploits the index divided into three parts for efficient pruning. The algorithm determines the two structural parameters by minimizing the approximate number of multiplications related to that of instructions, reduces the branch mispredictions by sharing the index structure including the two parameters with all the objects, and suppressing the cache misses by keeping in the caches the frequently used data in the foregoing specific region, resulting in working in the AFM. We experimentally demonstrate that our algorithm efficiently achieves superior speed performance in large-scale documents compared with algorithms using the state-of-the-art techniques.
Related papers
- FLASC: A Flare-Sensitive Clustering Algorithm [0.0]
We present FLASC, an algorithm that detects branches within clusters to identify subpopulations.
Two variants of the algorithm are presented, which trade computational cost for noise robustness.
We show that both variants scale similarly to HDBSCAN* in terms of computational cost and provide stable outputs.
arXiv Detail & Related papers (2023-11-27T14:55:16Z) - An Efficient Algorithm for Clustered Multi-Task Compressive Sensing [60.70532293880842]
Clustered multi-task compressive sensing is a hierarchical model that solves multiple compressive sensing tasks.
The existing inference algorithm for this model is computationally expensive and does not scale well in high dimensions.
We propose a new algorithm that substantially accelerates model inference by avoiding the need to explicitly compute these covariance matrices.
arXiv Detail & Related papers (2023-09-30T15:57:14Z) - CloudAttention: Efficient Multi-Scale Attention Scheme For 3D Point
Cloud Learning [81.85951026033787]
We set transformers in this work and incorporate them into a hierarchical framework for shape classification and part and scene segmentation.
We also compute efficient and dynamic global cross attentions by leveraging sampling and grouping at each iteration.
The proposed hierarchical model achieves state-of-the-art shape classification in mean accuracy and yields results on par with the previous segmentation methods.
arXiv Detail & Related papers (2022-07-31T21:39:15Z) - DRBM-ClustNet: A Deep Restricted Boltzmann-Kohonen Architecture for Data
Clustering [0.0]
A Bayesian Deep Restricted Boltzmann-Kohonen architecture for data clustering termed as DRBM-ClustNet is proposed.
The processing of unlabeled data is done in three stages for efficient clustering of the non-linearly separable datasets.
The framework is evaluated based on clustering accuracy and ranked against other state-of-the-art clustering methods.
arXiv Detail & Related papers (2022-05-13T15:12:18Z) - Riemannian classification of EEG signals with missing values [67.90148548467762]
This paper proposes two strategies to handle missing data for the classification of electroencephalograms.
The first approach estimates the covariance from imputed data with the $k$-nearest neighbors algorithm; the second relies on the observed data by leveraging the observed-data likelihood within an expectation-maximization algorithm.
As results show, the proposed strategies perform better than the classification based on observed data and allow to keep a high accuracy even when the missing data ratio increases.
arXiv Detail & Related papers (2021-10-19T14:24:50Z) - Structured Inverted-File k-Means Clustering for High-Dimensional Sparse
Data [2.487445341407889]
This paper presents an architecture-friendly k-means clustering algorithm called SIVF for a large-scale and high-dimensional sparse data set.
Our performance analysis reveals that SIVF achieves the higher speed by suppressing performance degradation factors of the number of cache misses and branch mispredictions.
arXiv Detail & Related papers (2021-03-30T07:54:02Z) - A Holistically-Guided Decoder for Deep Representation Learning with
Applications to Semantic Segmentation and Object Detection [74.88284082187462]
One common strategy is to adopt dilated convolutions in the backbone networks to extract high-resolution feature maps.
We propose one novel holistically-guided decoder which is introduced to obtain the high-resolution semantic-rich feature maps.
arXiv Detail & Related papers (2020-12-18T10:51:49Z) - DyCo3D: Robust Instance Segmentation of 3D Point Clouds through Dynamic
Convolution [136.7261709896713]
We propose a data-driven approach that generates the appropriate convolution kernels to apply in response to the nature of the instances.
The proposed method achieves promising results on both ScanetNetV2 and S3DIS.
It also improves inference speed by more than 25% over the current state-of-the-art.
arXiv Detail & Related papers (2020-11-26T14:56:57Z) - New advances in enumerative biclustering algorithms with online
partitioning [80.22629846165306]
This paper further extends RIn-Close_CVC, a biclustering algorithm capable of performing an efficient, complete, correct and non-redundant enumeration of maximal biclusters with constant values on columns in numerical datasets.
The improved algorithm is called RIn-Close_CVC3, keeps those attractive properties of RIn-Close_CVC, and is characterized by: a drastic reduction in memory usage; a consistent gain in runtime.
arXiv Detail & Related papers (2020-03-07T14:54:26Z) - Data Structures & Algorithms for Exact Inference in Hierarchical
Clustering [41.24805506595378]
We present novel dynamic-programming algorithms for emphexact inference in hierarchical clustering based on a novel trellis data structure.
Our algorithms scale in time and space proportional to the powerset of $N$ elements which is super-exponentially more efficient than explicitly considering each of the (2N-3)!! possible hierarchies.
arXiv Detail & Related papers (2020-02-26T17:43:53Z) - Inverted-File k-Means Clustering: Performance Analysis [1.3955252961896318]
inverted-file k-means clustering algorithm (IVF) suitable for a large-scale sparse data set with potentially numerous classes.
We experimentally demonstrate that IVF achieves better performance than the designed algorithms.
arXiv Detail & Related papers (2020-02-21T02:20:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.