Syllabus: Portable Curricula for Reinforcement Learning Agents
- URL: http://arxiv.org/abs/2411.11318v1
- Date: Mon, 18 Nov 2024 06:22:30 GMT
- Title: Syllabus: Portable Curricula for Reinforcement Learning Agents
- Authors: Ryan Sullivan, Ryan Pégoud, Ameen Ur Rahmen, Xinchen Yang, Junyun Huang, Aayush Verma, Nistha Mitra, John P. Dickerson,
- Abstract summary: Syllabus is a library for training RL agents with curriculum learning.
Syllabus provides a universal API for curriculum learning algorithms.
We show first examples of curriculum learning in NetHack and Neural MMO.
- Score: 21.20246467152236
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Curriculum learning has been a quiet yet crucial component of many of the high-profile successes of reinforcement learning. Despite this, none of the major reinforcement learning libraries directly support curriculum learning or include curriculum learning implementations. These methods can improve the capabilities and robustness of RL agents, but often require significant, complex changes to agent training code. We introduce Syllabus, a library for training RL agents with curriculum learning, as a solution to this problem. Syllabus provides a universal API for curriculum learning algorithms, implementations of popular curriculum learning methods, and infrastructure for easily integrating them with distributed training code written in nearly any RL library. Syllabus provides a minimal API for each of the core components of curriculum learning, dramatically simplifying the process of designing new algorithms and applying existing algorithms to new environments. We demonstrate that the same Syllabus code can be used to train agents written in multiple different RL libraries on numerous domains. In doing so, we present the first examples of curriculum learning in NetHack and Neural MMO, two of the premier challenges for single-agent and multi-agent RL respectively, achieving strong results compared to state of the art baselines.
Related papers
- An Introduction to Reinforcement Learning: Fundamental Concepts and Practical Applications [3.1699526199304007]
Reinforcement Learning (RL) is a branch of Artificial Intelligence (AI) which focuses on training agents to make decisions by interacting with their environment to maximize cumulative rewards.
An overview of RL is provided in this paper, which discusses its core concepts, methodologies, recent trends, and resources for learning.
arXiv Detail & Related papers (2024-08-13T23:08:06Z) - Self-Supervised Curriculum Generation for Autonomous Reinforcement
Learning without Task-Specific Knowledge [25.168236693829783]
A significant bottleneck in applying current reinforcement learning algorithms to real-world scenarios is the need to reset the environment between every episode.
We propose a novel ARL algorithm that can generate a curriculum adaptive to the agent's learning progress without task-specific knowledge.
arXiv Detail & Related papers (2023-11-15T18:40:10Z) - Dynamic Task and Weight Prioritization Curriculum Learning for
Multimodal Imagery [0.5439020425819]
This paper explores post-disaster analytics using multimodal deep learning models trained with curriculum learning method.
Curriculum learning emulates the progressive learning sequence in human education by training deep learning models on increasingly complex data.
arXiv Detail & Related papers (2023-10-29T18:46:33Z) - Accelerate Multi-Agent Reinforcement Learning in Zero-Sum Games with
Subgame Curriculum Learning [65.36326734799587]
We present a novel subgame curriculum learning framework for zero-sum games.
It adopts an adaptive initial state distribution by resetting agents to some previously visited states.
We derive a subgame selection metric that approximates the squared distance to NE values.
arXiv Detail & Related papers (2023-10-07T13:09:37Z) - CodeGen2: Lessons for Training LLMs on Programming and Natural Languages [116.74407069443895]
We unify encoder and decoder-based models into a single prefix-LM.
For learning methods, we explore the claim of a "free lunch" hypothesis.
For data distributions, the effect of a mixture distribution and multi-epoch training of programming and natural languages on model performance is explored.
arXiv Detail & Related papers (2023-05-03T17:55:25Z) - SequeL: A Continual Learning Library in PyTorch and JAX [50.33956216274694]
SequeL is a library for Continual Learning that supports both PyTorch and JAX frameworks.
It provides a unified interface for a wide range of Continual Learning algorithms, including regularization-based approaches, replay-based approaches, and hybrid approaches.
We release SequeL as an open-source library, enabling researchers and developers to easily experiment and extend the library for their own purposes.
arXiv Detail & Related papers (2023-04-21T10:00:22Z) - Learning Rate Curriculum [75.98230528486401]
We propose a novel curriculum learning approach termed Learning Rate Curriculum (LeRaC)
LeRaC uses a different learning rate for each layer of a neural network to create a data-agnostic curriculum during the initial training epochs.
We compare our approach with Curriculum by Smoothing (CBS), a state-of-the-art data-agnostic curriculum learning approach.
arXiv Detail & Related papers (2022-05-18T18:57:36Z) - Jump-Start Reinforcement Learning [68.82380421479675]
We present a meta algorithm that can use offline data, demonstrations, or a pre-existing policy to initialize an RL policy.
In particular, we propose Jump-Start Reinforcement Learning (JSRL), an algorithm that employs two policies to solve tasks.
We show via experiments that JSRL is able to significantly outperform existing imitation and reinforcement learning algorithms.
arXiv Detail & Related papers (2022-04-05T17:25:22Z) - SaLinA: Sequential Learning of Agents [13.822224899460656]
SaLinA is a library that makes implementing complex sequential learning models easy, including reinforcement learning algorithms.
It is built as an extension of PyTorch: algorithms coded with SALINA can be understood in few minutes by PyTorch users and modified easily.
arXiv Detail & Related papers (2021-10-15T07:50:35Z) - Learning Multi-Objective Curricula for Deep Reinforcement Learning [55.27879754113767]
Various automatic curriculum learning (ACL) methods have been proposed to improve the sample efficiency and final performance of deep reinforcement learning (DRL)
In this paper, we propose a unified automatic curriculum learning framework to create multi-objective but coherent curricula.
In addition to existing hand-designed curricula paradigms, we further design a flexible memory mechanism to learn an abstract curriculum.
arXiv Detail & Related papers (2021-10-06T19:30:25Z) - Solo-learn: A Library of Self-supervised Methods for Visual
Representation Learning [83.02597612195966]
solo-learn is a library of self-supervised methods for visual representation learning.
Implemented in Python, using Pytorch and Pytorch lightning, the library fits both research and industry needs.
arXiv Detail & Related papers (2021-08-03T22:19:55Z) - Text Generation with Efficient (Soft) Q-Learning [91.47743595382758]
Reinforcement learning (RL) offers a more flexible solution by allowing users to plug in arbitrary task metrics as reward.
We introduce a new RL formulation for text generation from the soft Q-learning perspective.
We apply the approach to a wide range of tasks, including learning from noisy/negative examples, adversarial attacks, and prompt generation.
arXiv Detail & Related papers (2021-06-14T18:48:40Z) - MALib: A Parallel Framework for Population-based Multi-agent
Reinforcement Learning [61.28547338576706]
Population-based multi-agent reinforcement learning (PB-MARL) refers to the series of methods nested with reinforcement learning (RL) algorithms.
We present MALib, a scalable and efficient computing framework for PB-MARL.
arXiv Detail & Related papers (2021-06-05T03:27:08Z) - MBRL-Lib: A Modular Library for Model-based Reinforcement Learning [13.467075854633213]
We present MBRL-Lib -- a machine learning library for model-based reinforcement learning in continuous state-action spaces based on PyTorch.
It is designed as a platform for both researchers, to easily develop, debug and compare new algorithms, and non-expert user, to lower the entry-bar of deploying state-of-the-art algorithms.
arXiv Detail & Related papers (2021-04-20T17:58:22Z) - Variable-Shot Adaptation for Online Meta-Learning [123.47725004094472]
We study the problem of learning new tasks from a small, fixed number of examples, by meta-learning across static data from a set of previous tasks.
We find that meta-learning solves the full task set with fewer overall labels and greater cumulative performance, compared to standard supervised methods.
These results suggest that meta-learning is an important ingredient for building learning systems that continuously learn and improve over a sequence of problems.
arXiv Detail & Related papers (2020-12-14T18:05:24Z) - Meta Automatic Curriculum Learning [35.13646854355393]
We introduce the concept of Meta-ACL, and formalize it in the context of black-box RL learners.
We present AGAIN, a first instantiation of Meta-ACL, and showcase its benefits for curriculum generation over classical ACL.
arXiv Detail & Related papers (2020-11-16T14:56:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.