Modeling Multivariable High-resolution 3D Urban Microclimate Using Localized Fourier Neural Operator
- URL: http://arxiv.org/abs/2411.11348v1
- Date: Mon, 18 Nov 2024 07:38:25 GMT
- Title: Modeling Multivariable High-resolution 3D Urban Microclimate Using Localized Fourier Neural Operator
- Authors: Shaoxiang Qin, Dongxue Zhan, Dingyang Geng, Wenhui Peng, Geng Tian, Yurong Shi, Naiping Gao, Xue Liu, Liangzhu Leon Wang,
- Abstract summary: Traditional computational fluid dynamics simulations that couple velocity and temperature are computationally expensive.
Recent machine learning advancements offer promising alternatives for accelerating urban microclimate simulations.
We propose a novel localized Fourier neural operator (Local-FNO) model that employs local training, geometry encoding, and patch overlapping.
It provides high-resolution predictions with 150 million feature dimensions on a single 32 GB GPU at nearly 50 times the speed of a CFD solver.
- Score: 2.148526586778159
- License:
- Abstract: Accurate urban microclimate analysis with wind velocity and temperature is vital for energy-efficient urban planning, supporting carbon reduction, enhancing public health and comfort, and advancing the low-altitude economy. However, traditional computational fluid dynamics (CFD) simulations that couple velocity and temperature are computationally expensive. Recent machine learning advancements offer promising alternatives for accelerating urban microclimate simulations. The Fourier neural operator (FNO) has shown efficiency and accuracy in predicting single-variable velocity magnitudes in urban wind fields. Yet, for multivariable high-resolution 3D urban microclimate prediction, FNO faces three key limitations: blurry output quality, high GPU memory demand, and substantial data requirements. To address these issues, we propose a novel localized Fourier neural operator (Local-FNO) model that employs local training, geometry encoding, and patch overlapping. Local-FNO provides accurate predictions for rapidly changing turbulence in urban microclimate over 60 seconds, four times the average turbulence integral time scale, with an average error of 0.35 m/s in velocity and 0.30 {\deg}C in temperature. It also accurately captures turbulent heat flux represented by the velocity-temperature correlation. In a 2 km by 2 km domain, Local-FNO resolves turbulence patterns down to a 10 m resolution. It provides high-resolution predictions with 150 million feature dimensions on a single 32 GB GPU at nearly 50 times the speed of a CFD solver. Compared to FNO, Local-FNO achieves a 23.9% reduction in prediction error and a 47.3% improvement in turbulent fluctuation correlation.
Related papers
- GeoFUSE: A High-Efficiency Surrogate Model for Seawater Intrusion Prediction and Uncertainty Reduction [0.10923877073891446]
Seawater intrusion into coastal aquifers poses a significant threat to groundwater resources.
We develop GeoFUSE, a novel deep-learning-based surrogate framework.
We apply GeoFUSE to a 2D cross-section of the Beaver Creek tidal stream-floodplain system in Washington State.
arXiv Detail & Related papers (2024-10-26T08:10:32Z) - Efficient Localized Adaptation of Neural Weather Forecasting: A Case Study in the MENA Region [62.09891513612252]
We focus on limited-area modeling and train our model specifically for localized region-level downstream tasks.
We consider the MENA region due to its unique climatic challenges, where accurate localized weather forecasting is crucial for managing water resources, agriculture and mitigating the impacts of extreme weather events.
Our study aims to validate the effectiveness of integrating parameter-efficient fine-tuning (PEFT) methodologies, specifically Low-Rank Adaptation (LoRA) and its variants, to enhance forecast accuracy, as well as training speed, computational resource utilization, and memory efficiency in weather and climate modeling for specific regions.
arXiv Detail & Related papers (2024-09-11T19:31:56Z) - Atmospheric Transport Modeling of CO$_2$ with Neural Networks [46.26819563674888]
Accurately describing the distribution of CO$$ in the atmosphere with atmospheric tracer transport models is essential for greenhouse gas monitoring and verification support systems.
Large deep neural networks are poised to revolutionize weather prediction, which requires 3D modeling of the atmosphere.
In this study we explore four different deep neural networks which have proven as state-of-the-art in weather prediction to assess their usefulness for atmospheric tracer transport modeling.
arXiv Detail & Related papers (2024-08-20T17:33:20Z) - Residual Corrective Diffusion Modeling for Km-scale Atmospheric Downscaling [58.456404022536425]
State of the art for physical hazard prediction from weather and climate requires expensive km-scale numerical simulations driven by coarser resolution global inputs.
Here, a generative diffusion architecture is explored for downscaling such global inputs to km-scale, as a cost-effective machine learning alternative.
The model is trained to predict 2km data from a regional weather model over Taiwan, conditioned on a 25km global reanalysis.
arXiv Detail & Related papers (2023-09-24T19:57:22Z) - Fourier neural operator for real-time simulation of 3D dynamic urban
microclimate [2.1680962744993657]
We apply the Fourier Neural Operator (FNO) network for real-time three-dimensional (3D) urban wind field simulation.
Numerical experiments show that the FNO model can accurately reconstruct the instantaneous spatial velocity field.
We further evaluate the trained FNO model on unseen data with different wind directions, and the results show that the FNO model can generalize well on different wind directions.
arXiv Detail & Related papers (2023-08-08T02:03:47Z) - Deep Learning for Day Forecasts from Sparse Observations [60.041805328514876]
Deep neural networks offer an alternative paradigm for modeling weather conditions.
MetNet-3 learns from both dense and sparse data sensors and makes predictions up to 24 hours ahead for precipitation, wind, temperature and dew point.
MetNet-3 has a high temporal and spatial resolution, respectively, up to 2 minutes and 1 km as well as a low operational latency.
arXiv Detail & Related papers (2023-06-06T07:07:54Z) - FengWu: Pushing the Skillful Global Medium-range Weather Forecast beyond
10 Days Lead [93.67314652898547]
We present FengWu, an advanced data-driven global medium-range weather forecast system based on Artificial Intelligence (AI)
FengWu is able to accurately reproduce the atmospheric dynamics and predict the future land and atmosphere states at 37 vertical levels on a 0.25deg latitude-longitude resolution.
The results suggest that FengWu can significantly improve the forecast skill and extend the skillful global medium-range weather forecast out to 10.75 days lead.
arXiv Detail & Related papers (2023-04-06T09:16:39Z) - Forecasting subcritical cylinder wakes with Fourier Neural Operators [58.68996255635669]
We apply a state-of-the-art operator learning technique to forecast the temporal evolution of experimentally measured velocity fields.
We find that FNOs are capable of accurately predicting the evolution of experimental velocity fields throughout the range of Reynolds numbers tested.
arXiv Detail & Related papers (2023-01-19T20:04:36Z) - Statistical treatment of convolutional neural network super-resolution
of inland surface wind for subgrid-scale variability quantification [13.209152157749534]
This study examines the ability of convolutional neural networks (CNN) to downscale surface wind speed data.
Within each downscaling factor, namely 8x, 16x, and 32x, we consider models that produce fine-scale wind speed predictions.
All CNN predictions performed on one out-of-sample data classical outperform classical predictions.
arXiv Detail & Related papers (2022-11-30T03:11:43Z) - Pangu-Weather: A 3D High-Resolution Model for Fast and Accurate Global
Weather Forecast [91.9372563527801]
We present Pangu-Weather, a deep learning based system for fast and accurate global weather forecast.
For the first time, an AI-based method outperforms state-of-the-art numerical weather prediction (NWP) methods in terms of accuracy.
Pangu-Weather supports a wide range of downstream forecast scenarios, including extreme weather forecast and large-member ensemble forecast in real-time.
arXiv Detail & Related papers (2022-11-03T17:19:43Z) - Statistical Downscaling of Temperature Distributions from the Synoptic
Scale to the Mesoscale Using Deep Convolutional Neural Networks [0.0]
One of the promising applications is developing a statistical surrogate model that converts the output images of low-resolution dynamic models to high-resolution images.
Our study evaluates a surrogate model that downscales synoptic temperature fields to mesoscale temperature fields every 6 hours.
If the surrogate models are implemented at short time intervals, they will provide high-resolution weather forecast guidance or environment emergency alerts at low cost.
arXiv Detail & Related papers (2020-07-20T06:24:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.