Generative Modeling of Microweather Wind Velocities for Urban Air Mobility
- URL: http://arxiv.org/abs/2503.02690v1
- Date: Tue, 04 Mar 2025 15:03:15 GMT
- Title: Generative Modeling of Microweather Wind Velocities for Urban Air Mobility
- Authors: Tristan A. Shah, Michael C. Stanley, James E. Warner,
- Abstract summary: Motivated by the pursuit of safe, reliable, and weather-tolerant urban air mobility (UAM) solutions, this work proposes a generative modeling approach for characterizing microweather wind velocities.<n>This work aims to model microweather wind velocities in a manner that is computationally-efficient, captures random variability, and would only require a temporary, rather than permanent, field measurement campaign.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Motivated by the pursuit of safe, reliable, and weather-tolerant urban air mobility (UAM) solutions, this work proposes a generative modeling approach for characterizing microweather wind velocities. Microweather, or the weather conditions in highly localized areas, is particularly complex in urban environments owing to the chaotic and turbulent nature of wind flows. Furthermore, traditional means of assessing local wind fields are not generally viable solutions for UAM applications: 1) field measurements that would rely on permanent wind profiling systems in operational air space are not practical, 2) physics-based models that simulate fluid dynamics at a sufficiently high resolution are not computationally tractable, and 3) data-driven modeling approaches that are largely deterministic ignore the inherent variability in turbulent flows that dictates UAM reliability. Thus, advancements in predictive capabilities are needed to help mitigate the unique operational safety risks that microweather winds pose for smaller, lighter weight UAM aircraft. This work aims to model microweather wind velocities in a manner that is computationally-efficient, captures random variability, and would only require a temporary, rather than permanent, field measurement campaign. Inspired by recent breakthroughs in conditional generative AI such as text-to-image generation, the proposed approach learns a probabilistic macro-to-microweather mapping between regional weather forecasts and measured local wind velocities using generative modeling (denoising diffusion probabilistic models, flow matching, and Gaussian mixture models). A simple proof of concept was implemented using a dataset comprised of local (micro) measurements from a Sonic Detection and Ranging (SoDAR) wind profiler along with (macro) forecast data from a nearby weather station over the same time period.
Related papers
- Handling Weather Uncertainty in Air Traffic Prediction through an Inverse Approach [0.0]
Adverse weather conditions, particularly convective phenomena, pose significant challenges to Air Traffic Management.
This study introduces a 3-D Gaussian Mixture Model to predict long lead-time flight trajectory changes.
The model demonstrates robust performance in forecasting reroutes up to 60 minutes.
arXiv Detail & Related papers (2025-04-07T15:42:09Z) - ClimateLLM: Efficient Weather Forecasting via Frequency-Aware Large Language Models [13.740208247043258]
We propose ClimateLLM, a foundation model for weather forecasting.<n>It captures temporal dependencies via a cross-temporal and cross-spatial collaborative framework.<n>It integrates frequency decomposition with Large Language Models to strengthen spatial and temporal modeling.
arXiv Detail & Related papers (2025-02-16T09:57:50Z) - TAUDiff: Highly efficient kilometer-scale downscaling using generative diffusion models [0.0]
It is crucial to achieve rapid turnaround, dynamical consistency, and accurate-temporal recovery for extreme weather events.
We propose an efficient diffusion model TAUDiff, that combines a deterministic-temporal model for mean field downscaling with a smaller generative diffusion model for recovering the fine-scale features.
Our approach can ensure quicker simulation of extreme events necessary for estimating associated risks and economic losses.
arXiv Detail & Related papers (2024-12-18T09:05:19Z) - FengWu-W2S: A deep learning model for seamless weather-to-subseasonal forecast of global atmosphere [53.22497376154084]
We propose FengWu-Weather to Subseasonal (FengWu-W2S), which builds on the FengWu global weather forecast model and incorporates an ocean-atmosphere-land coupling structure along with a diverse perturbation strategy.
Our hindcast results demonstrate that FengWu-W2S reliably predicts atmospheric conditions out to 3-6 weeks ahead, enhancing predictive capabilities for global surface air temperature, precipitation, geopotential height and intraseasonal signals such as the Madden-Julian Oscillation (MJO) and North Atlantic Oscillation (NAO)
Our ablation experiments on forecast error growth from daily to seasonal timescales reveal potential
arXiv Detail & Related papers (2024-11-15T13:44:37Z) - Interpolation-Free Deep Learning for Meteorological Downscaling on Unaligned Grids Across Multiple Domains with Application to Wind Power [0.0]
Wind energy production is set to accelerate, and reliable wind probabilistic forecasts are essential to ensure its efficient use.
Since numerical weather prediction models are computationally expensive, probabilistic forecasts are produced at resolutions too coarse to capture all mesoscale wind behaviors.
Statistical downscaling presents a viable solution with lower computational costs by learning a mapping from low-resolution (LR) variables to high-resolution (HR) meteorological variables.
arXiv Detail & Related papers (2024-10-04T22:04:40Z) - Efficient Localized Adaptation of Neural Weather Forecasting: A Case Study in the MENA Region [62.09891513612252]
We focus on limited-area modeling and train our model specifically for localized region-level downstream tasks.
We consider the MENA region due to its unique climatic challenges, where accurate localized weather forecasting is crucial for managing water resources, agriculture and mitigating the impacts of extreme weather events.
Our study aims to validate the effectiveness of integrating parameter-efficient fine-tuning (PEFT) methodologies, specifically Low-Rank Adaptation (LoRA) and its variants, to enhance forecast accuracy, as well as training speed, computational resource utilization, and memory efficiency in weather and climate modeling for specific regions.
arXiv Detail & Related papers (2024-09-11T19:31:56Z) - Kilometer-Scale Convection Allowing Model Emulation using Generative Diffusion Modeling [19.340636269420692]
Storm-scale convection-allowing models (CAMs) are an important tool for predicting the evolution of thunderstorms and mesoscale convective systems.
Deep learning models have thus far not proven skilful at km-scale atmospheric simulation.
We present a generative diffusion model called StormCast, which emulates the high-resolution rapid refresh (HRRR) model-NOAA's state-of-the-art 3km operational CAM.
arXiv Detail & Related papers (2024-08-20T15:56:01Z) - MambaDS: Near-Surface Meteorological Field Downscaling with Topography Constrained Selective State Space Modeling [68.69647625472464]
Downscaling, a crucial task in meteorological forecasting, enables the reconstruction of high-resolution meteorological states for target regions.
Previous downscaling methods lacked tailored designs for meteorology and encountered structural limitations.
We propose a novel model called MambaDS, which enhances the utilization of multivariable correlations and topography information.
arXiv Detail & Related papers (2024-08-20T13:45:49Z) - ClimODE: Climate and Weather Forecasting with Physics-informed Neural ODEs [14.095897879222676]
We present ClimODE, a continuous-time process that implements key principle of statistical mechanics.
ClimODE models precise weather evolution with value-conserving dynamics, learning global weather transport as a neural flow.
Our approach outperforms existing data-driven methods in global, regional forecasting with an order of magnitude smaller parameterization.
arXiv Detail & Related papers (2024-04-15T06:38:21Z) - ExtremeCast: Boosting Extreme Value Prediction for Global Weather Forecast [57.6987191099507]
We introduce Exloss, a novel loss function that performs asymmetric optimization and highlights extreme values to obtain accurate extreme weather forecast.
We also introduce ExBooster, which captures the uncertainty in prediction outcomes by employing multiple random samples.
Our solution can achieve state-of-the-art performance in extreme weather prediction, while maintaining the overall forecast accuracy comparable to the top medium-range forecast models.
arXiv Detail & Related papers (2024-02-02T10:34:13Z) - Learning Robust Precipitation Forecaster by Temporal Frame Interpolation [65.5045412005064]
We develop a robust precipitation forecasting model that demonstrates resilience against spatial-temporal discrepancies.
Our approach has led to significant improvements in forecasting precision, culminating in our model securing textit1st place in the transfer learning leaderboard of the textitWeather4cast'23 competition.
arXiv Detail & Related papers (2023-11-30T08:22:08Z) - Lidar Light Scattering Augmentation (LISA): Physics-based Simulation of
Adverse Weather Conditions for 3D Object Detection [60.89616629421904]
Lidar-based object detectors are critical parts of the 3D perception pipeline in autonomous navigation systems such as self-driving cars.
They are sensitive to adverse weather conditions such as rain, snow and fog due to reduced signal-to-noise ratio (SNR) and signal-to-background ratio (SBR)
arXiv Detail & Related papers (2021-07-14T21:10:47Z) - DeepClimGAN: A High-Resolution Climate Data Generator [60.59639064716545]
Earth system models (ESMs) are often used to generate future projections of climate change scenarios.
As a compromise, emulators are substantially less expensive but may not have all of the complexity of an ESM.
Here we demonstrate the use of a conditional generative adversarial network (GAN) to act as an ESM emulator.
arXiv Detail & Related papers (2020-11-23T20:13:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.