MAIRA-Seg: Enhancing Radiology Report Generation with Segmentation-Aware Multimodal Large Language Models
- URL: http://arxiv.org/abs/2411.11362v1
- Date: Mon, 18 Nov 2024 08:13:22 GMT
- Title: MAIRA-Seg: Enhancing Radiology Report Generation with Segmentation-Aware Multimodal Large Language Models
- Authors: Harshita Sharma, Valentina Salvatelli, Shaury Srivastav, Kenza Bouzid, Shruthi Bannur, Daniel C. Castro, Maximilian Ilse, Sam Bond-Taylor, Mercy Prasanna Ranjit, Fabian Falck, Fernando Pérez-García, Anton Schwaighofer, Hannah Richardson, Maria Teodora Wetscherek, Stephanie L. Hyland, Javier Alvarez-Valle,
- Abstract summary: We introduce MAIRA-Seg, a segmentation-aware MLLM framework for radiology report generation.
We train expert segmentation models to obtain mask pseudolabels for radiology-specific structures in CXRs.
We employ mask-aware prompting to generate draft radiology reports.
- Score: 36.59952396405939
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: There is growing interest in applying AI to radiology report generation, particularly for chest X-rays (CXRs). This paper investigates whether incorporating pixel-level information through segmentation masks can improve fine-grained image interpretation of multimodal large language models (MLLMs) for radiology report generation. We introduce MAIRA-Seg, a segmentation-aware MLLM framework designed to utilize semantic segmentation masks alongside CXRs for generating radiology reports. We train expert segmentation models to obtain mask pseudolabels for radiology-specific structures in CXRs. Subsequently, building on the architectures of MAIRA, a CXR-specialised model for report generation, we integrate a trainable segmentation tokens extractor that leverages these mask pseudolabels, and employ mask-aware prompting to generate draft radiology reports. Our experiments on the publicly available MIMIC-CXR dataset show that MAIRA-Seg outperforms non-segmentation baselines. We also investigate set-of-marks prompting with MAIRA and find that MAIRA-Seg consistently demonstrates comparable or superior performance. The results confirm that using segmentation masks enhances the nuanced reasoning of MLLMs, potentially contributing to better clinical outcomes.
Related papers
- Learning Segmentation from Radiology Reports [46.073392569125375]
Tumor segmentation in CT scans is key for diagnosis, surgery, and prognosis.<n>Yet segmentation masks are scarce because their creation requires time and expertise.<n>We propose a report-supervision loss (R-Super) that converts radiology reports into voxel-wise supervision for tumor segmentation AI.
arXiv Detail & Related papers (2025-07-08T01:37:34Z) - Activating Associative Disease-Aware Vision Token Memory for LLM-Based X-ray Report Generation [54.631356899598956]
We propose a novel associative memory-enhanced X-ray report generation model that effectively mimics the process of professional doctors writing medical reports.
We employ a visual Hopfield network to establish memory associations for disease-related tokens, and a report Hopfield network to retrieve report memory information.
arXiv Detail & Related papers (2025-01-07T01:19:48Z) - MRGen: Segmentation Data Engine For Underrepresented MRI Modalities [59.61465292965639]
Training medical image segmentation models for rare yet clinically significant imaging modalities is challenging due to the scarcity of annotated data.
This paper investigates leveraging generative models to synthesize training data, to train segmentation models for underrepresented modalities.
arXiv Detail & Related papers (2024-12-04T16:34:22Z) - FG-CXR: A Radiologist-Aligned Gaze Dataset for Enhancing Interpretability in Chest X-Ray Report Generation [9.374812942790953]
We introduce Fine-Grained CXR dataset, which provides fine-grained paired information between the captions generated by radiologists and the corresponding gaze attention heatmaps for each anatomy.
Our analysis reveals that simply applying black-box image captioning methods to generate reports cannot adequately explain which information in CXR is utilized.
We propose a novel explainable radiologist's attention generator network (Gen-XAI) that mimics the diagnosis process of radiologists, explicitly constraining its output to closely align with both radiologist's gaze attention and transcript.
arXiv Detail & Related papers (2024-11-23T02:22:40Z) - LTCXNet: Advancing Chest X-Ray Analysis with Solutions for Long-Tailed Multi-Label Classification and Fairness Challenges [4.351007758390175]
Pruned MIMIC-CXR-LT dataset is designed to represent a long-tailed and multi-label data scenario.
We introduce LTCXNet, a novel framework that integrates the ConvNeXt model, ML-Decoder, and strategic data augmentation.
arXiv Detail & Related papers (2024-11-16T08:59:20Z) - MedCLIP-SAMv2: Towards Universal Text-Driven Medical Image Segmentation [2.2585213273821716]
We introduce MedCLIP-SAMv2, a novel framework that integrates the CLIP and SAM models to perform segmentation on clinical scans.
Our approach includes fine-tuning the BiomedCLIP model with a new Decoupled Hard Negative Noise Contrastive Estimation (DHN-NCE) loss.
We also investigate using zero-shot segmentation labels within a weakly supervised paradigm to enhance segmentation quality further.
arXiv Detail & Related papers (2024-09-28T23:10:37Z) - MedCLIP-SAM: Bridging Text and Image Towards Universal Medical Image Segmentation [2.2585213273821716]
We propose a novel framework, called MedCLIP-SAM, that combines CLIP and SAM models to generate segmentation of clinical scans.
By extensively testing three diverse segmentation tasks and medical image modalities, our proposed framework has demonstrated excellent accuracy.
arXiv Detail & Related papers (2024-03-29T15:59:11Z) - Mask-Enhanced Segment Anything Model for Tumor Lesion Semantic Segmentation [48.107348956719775]
We introduce Mask-Enhanced SAM (M-SAM), an innovative architecture tailored for 3D tumor lesion segmentation.
We propose a novel Mask-Enhanced Adapter (MEA) within M-SAM that enriches the semantic information of medical images with positional data from coarse segmentation masks.
Our M-SAM achieves high segmentation accuracy and also exhibits robust generalization.
arXiv Detail & Related papers (2024-03-09T13:37:02Z) - MAIRA-1: A specialised large multimodal model for radiology report generation [41.69727330319648]
We present a radiology-specific multimodal model for generating radiological reports from chest X-rays (CXRs)
Our work builds on the idea that large language model(s) can be equipped with multimodal capabilities through alignment with pre-trained vision encoders.
Our proposed model (MAIRA-1) leverages a CXR-specific image encoder in conjunction with a fine-tuned large language model based on Vicuna-7B, and text-based data augmentation, to produce reports with state-of-the-art quality.
arXiv Detail & Related papers (2023-11-22T19:45:40Z) - Self-Supervised Neuron Segmentation with Multi-Agent Reinforcement
Learning [53.00683059396803]
Mask image model (MIM) has been widely used due to its simplicity and effectiveness in recovering original information from masked images.
We propose a decision-based MIM that utilizes reinforcement learning (RL) to automatically search for optimal image masking ratio and masking strategy.
Our approach has a significant advantage over alternative self-supervised methods on the task of neuron segmentation.
arXiv Detail & Related papers (2023-10-06T10:40:46Z) - R-MAE: Regions Meet Masked Autoencoders [113.73147144125385]
We explore regions as a potential visual analogue of words for self-supervised image representation learning.
Inspired by Masked Autoencoding (MAE), a generative pre-training baseline, we propose masked region autoencoding to learn from groups of pixels or regions.
arXiv Detail & Related papers (2023-06-08T17:56:46Z) - Cross-Modal Causal Intervention for Medical Report Generation [109.83549148448469]
Medical report generation (MRG) is essential for computer-aided diagnosis and medication guidance.
Due to the spurious correlations within image-text data induced by visual and linguistic biases, it is challenging to generate accurate reports reliably describing lesion areas.
We propose a novel Visual-Linguistic Causal Intervention (VLCI) framework for MRG, which consists of a visual deconfounding module (VDM) and a linguistic deconfounding module (LDM)
arXiv Detail & Related papers (2023-03-16T07:23:55Z) - Learning Class-Agnostic Pseudo Mask Generation for Box-Supervised
Semantic Segmentation [156.9155100983315]
We seek for a more accurate learning-based class-agnostic pseudo mask generator tailored to box-supervised semantic segmentation.
Our method can further close the performance gap between box-supervised and fully-supervised models.
arXiv Detail & Related papers (2021-03-09T14:54:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.