Bridging the Resource Gap: Deploying Advanced Imitation Learning Models onto Affordable Embedded Platforms
- URL: http://arxiv.org/abs/2411.11406v1
- Date: Mon, 18 Nov 2024 09:28:11 GMT
- Title: Bridging the Resource Gap: Deploying Advanced Imitation Learning Models onto Affordable Embedded Platforms
- Authors: Haizhou Ge, Ruixiang Wang, Zhu-ang Xu, Hongrui Zhu, Ruichen Deng, Yuhang Dong, Zeyu Pang, Guyue Zhou, Junyu Zhang, Lu Shi,
- Abstract summary: We propose a pipeline that facilitates the migration of advanced imitation learning algorithms to edge devices.
To show the efficiency of the proposed pipeline, large-scale imitation learning models are trained on a server and deployed on an edge device to complete various manipulation tasks.
- Score: 13.488752211167533
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Advanced imitation learning with structures like the transformer is increasingly demonstrating its advantages in robotics. However, deploying these large-scale models on embedded platforms remains a major challenge. In this paper, we propose a pipeline that facilitates the migration of advanced imitation learning algorithms to edge devices. The process is achieved via an efficient model compression method and a practical asynchronous parallel method Temporal Ensemble with Dropped Actions (TEDA) that enhances the smoothness of operations. To show the efficiency of the proposed pipeline, large-scale imitation learning models are trained on a server and deployed on an edge device to complete various manipulation tasks.
Related papers
- Platonic Grounding for Efficient Multimodal Language Models [22.715168904364756]
We motivate and propose a simple modification to existing multimodal frameworks that rely on aligning pretrained models.
Our work also has implications for combining pretrained models into larger systems efficiently.
arXiv Detail & Related papers (2025-04-27T18:56:26Z) - Action Flow Matching for Continual Robot Learning [57.698553219660376]
Continual learning in robotics seeks systems that can constantly adapt to changing environments and tasks.
We introduce a generative framework leveraging flow matching for online robot dynamics model alignment.
We find that by transforming the actions themselves rather than exploring with a misaligned model, the robot collects informative data more efficiently.
arXiv Detail & Related papers (2025-04-25T16:26:15Z) - Dita: Scaling Diffusion Transformer for Generalist Vision-Language-Action Policy [56.424032454461695]
We present Dita, a scalable framework that leverages Transformer architectures to directly denoise continuous action sequences.
Dita employs in-context conditioning -- enabling fine-grained alignment between denoised actions and raw visual tokens from historical observations.
Dita effectively integrates cross-embodiment datasets across diverse camera perspectives, observation scenes, tasks, and action spaces.
arXiv Detail & Related papers (2025-03-25T15:19:56Z) - Transforming Vision Transformer: Towards Efficient Multi-Task Asynchronous Learning [59.001091197106085]
Multi-Task Learning (MTL) for Vision Transformer aims at enhancing the model capability by tackling multiple tasks simultaneously.
Most recent works have predominantly focused on designing Mixture-of-Experts (MoE) structures and in tegrating Low-Rank Adaptation (LoRA) to efficiently perform multi-task learning.
We propose a novel approach dubbed Efficient Multi-Task Learning (EMTAL) by transforming a pre-trained Vision Transformer into an efficient multi-task learner.
arXiv Detail & Related papers (2025-01-12T17:41:23Z) - DODT: Enhanced Online Decision Transformer Learning through Dreamer's Actor-Critic Trajectory Forecasting [37.334947053450996]
We introduce a novel approach that combines the Dreamer algorithm's ability to generate anticipatory trajectories with the adaptive strengths of the Online Decision Transformer.
Our methodology enables parallel training where Dreamer-produced trajectories enhance the contextual decision-making of the transformer.
arXiv Detail & Related papers (2024-10-15T07:27:56Z) - Boosting Continual Learning of Vision-Language Models via Mixture-of-Experts Adapters [65.15700861265432]
We present a parameter-efficient continual learning framework to alleviate long-term forgetting in incremental learning with vision-language models.
Our approach involves the dynamic expansion of a pre-trained CLIP model, through the integration of Mixture-of-Experts (MoE) adapters.
To preserve the zero-shot recognition capability of vision-language models, we introduce a Distribution Discriminative Auto-Selector.
arXiv Detail & Related papers (2024-03-18T08:00:23Z) - ATOM: Asynchronous Training of Massive Models for Deep Learning in a Decentralized Environment [7.916080032572087]
atom is a resilient distributed training framework designed for asynchronous training of vast models in a decentralized setting.
atom aims to accommodate a complete LLM on one host (peer) through seamlessly model swapping and concurrently trains multiple copies across various peers to optimize training throughput.
Our experiments using different GPT-3 model configurations reveal that, in scenarios with suboptimal network connections, atom can enhance training efficiency up to $20 times$ when juxtaposed with the state-of-the-art decentralized pipeline parallelism approaches.
arXiv Detail & Related papers (2024-03-15T17:43:43Z) - PILOT: A Pre-Trained Model-Based Continual Learning Toolbox [71.63186089279218]
This paper introduces a pre-trained model-based continual learning toolbox known as PILOT.
On the one hand, PILOT implements some state-of-the-art class-incremental learning algorithms based on pre-trained models, such as L2P, DualPrompt, and CODA-Prompt.
On the other hand, PILOT fits typical class-incremental learning algorithms within the context of pre-trained models to evaluate their effectiveness.
arXiv Detail & Related papers (2023-09-13T17:55:11Z) - BOOT: Data-free Distillation of Denoising Diffusion Models with
Bootstrapping [64.54271680071373]
Diffusion models have demonstrated excellent potential for generating diverse images.
Knowledge distillation has been recently proposed as a remedy that can reduce the number of inference steps to one or a few.
We present a novel technique called BOOT, that overcomes limitations with an efficient data-free distillation algorithm.
arXiv Detail & Related papers (2023-06-08T20:30:55Z) - eP-ALM: Efficient Perceptual Augmentation of Language Models [70.47962271121389]
We propose to direct effort to efficient adaptations of existing models, and propose to augment Language Models with perception.
Existing approaches for adapting pretrained models for vision-language tasks still rely on several key components that hinder their efficiency.
We show that by freezing more than 99% of total parameters, training only one linear projection layer, and prepending only one trainable token, our approach (dubbed eP-ALM) significantly outperforms other baselines on VQA and Captioning.
arXiv Detail & Related papers (2023-03-20T19:20:34Z) - SOLIS -- The MLOps journey from data acquisition to actionable insights [62.997667081978825]
In this paper we present a unified deployment pipeline and freedom-to-operate approach that supports all requirements while using basic cross-platform tensor framework and script language engines.
This approach however does not supply the needed procedures and pipelines for the actual deployment of machine learning capabilities in real production grade systems.
arXiv Detail & Related papers (2021-12-22T14:45:37Z) - Colossal-AI: A Unified Deep Learning System For Large-Scale Parallel
Training [23.633810934134065]
Colossal-AI can achieve up to 2.76 times training speedup on large-scale models.
System supports parallel training methods such as data, pipeline, tensor, and sequence parallelism.
arXiv Detail & Related papers (2021-10-28T04:45:55Z) - Efficient Transformers in Reinforcement Learning using Actor-Learner
Distillation [91.05073136215886]
"Actor-Learner Distillation" transfers learning progress from a large capacity learner model to a small capacity actor model.
We demonstrate in several challenging memory environments that using Actor-Learner Distillation recovers the clear sample-efficiency gains of the transformer learner model.
arXiv Detail & Related papers (2021-04-04T17:56:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.