Physics meets Topology: Physics-informed topological neural networks for learning rigid body dynamics
- URL: http://arxiv.org/abs/2411.11467v1
- Date: Mon, 18 Nov 2024 11:03:15 GMT
- Title: Physics meets Topology: Physics-informed topological neural networks for learning rigid body dynamics
- Authors: Amaury Wei, Olga Fink,
- Abstract summary: We introduce a novel framework for modeling rigid body dynamics and learning collision interactions.
We propose a physics-informed message-passing neural architecture, embedding physical laws directly in the model.
This work addresses the challenge of multi-entity dynamic interactions, with applications spanning diverse scientific and engineering domains.
- Score: 6.675805308519987
- License:
- Abstract: Rigid body interactions are fundamental to numerous scientific disciplines, but remain challenging to simulate due to their abrupt nonlinear nature and sensitivity to complex, often unknown environmental factors. These challenges call for adaptable learning-based methods capable of capturing complex interactions beyond explicit physical models and simulations. While graph neural networks can handle simple scenarios, they struggle with complex scenes and long-term predictions. We introduce a novel framework for modeling rigid body dynamics and learning collision interactions, addressing key limitations of existing graph-based methods. Our approach extends the traditional representation of meshes by incorporating higher-order topology complexes, offering a physically consistent representation. Additionally, we propose a physics-informed message-passing neural architecture, embedding physical laws directly in the model. Our method demonstrates superior accuracy, even during long rollouts, and exhibits strong generalization to unseen scenarios. Importantly, this work addresses the challenge of multi-entity dynamic interactions, with applications spanning diverse scientific and engineering domains.
Related papers
- Bond Graphs for multi-physics informed Neural Networks for multi-variate time series [6.775534755081169]
Existing methods are not adapted to tasks with complex multi-physical and multi-domain phenomena.
We propose a Neural Bond graph (NBgE) producing multi-physics-informed representations that can be fed into any task-specific model.
arXiv Detail & Related papers (2024-05-22T12:30:25Z) - Physics-Encoded Graph Neural Networks for Deformation Prediction under
Contact [87.69278096528156]
In robotics, it's crucial to understand object deformation during tactile interactions.
We introduce a method using Physics-Encoded Graph Neural Networks (GNNs) for such predictions.
We've made our code and dataset public to advance research in robotic simulation and grasping.
arXiv Detail & Related papers (2024-02-05T19:21:52Z) - Learning Physical Dynamics with Subequivariant Graph Neural Networks [99.41677381754678]
Graph Neural Networks (GNNs) have become a prevailing tool for learning physical dynamics.
Physical laws abide by symmetry, which is a vital inductive bias accounting for model generalization.
Our model achieves on average over 3% enhancement in contact prediction accuracy across 8 scenarios on Physion and 2X lower rollout MSE on RigidFall.
arXiv Detail & Related papers (2022-10-13T10:00:30Z) - Constructing Neural Network-Based Models for Simulating Dynamical
Systems [59.0861954179401]
Data-driven modeling is an alternative paradigm that seeks to learn an approximation of the dynamics of a system using observations of the true system.
This paper provides a survey of the different ways to construct models of dynamical systems using neural networks.
In addition to the basic overview, we review the related literature and outline the most significant challenges from numerical simulations that this modeling paradigm must overcome.
arXiv Detail & Related papers (2021-11-02T10:51:42Z) - Physics-Guided Deep Learning for Dynamical Systems: A survey [5.733401663293044]
Traditional physics-based models are interpretable but rely on rigid assumptions.
Deep learning provides novel alternatives for efficiently recognizing complex patterns and emulating nonlinear dynamics.
It aims to take the best from both physics-based modeling and state-of-the-art DL models to better solve scientific problems.
arXiv Detail & Related papers (2021-07-02T20:59:03Z) - Causal Navigation by Continuous-time Neural Networks [108.84958284162857]
We propose a theoretical and experimental framework for learning causal representations using continuous-time neural networks.
We evaluate our method in the context of visual-control learning of drones over a series of complex tasks.
arXiv Detail & Related papers (2021-06-15T17:45:32Z) - Learning Contact Dynamics using Physically Structured Neural Networks [81.73947303886753]
We use connections between deep neural networks and differential equations to design a family of deep network architectures for representing contact dynamics between objects.
We show that these networks can learn discontinuous contact events in a data-efficient manner from noisy observations.
Our results indicate that an idealised form of touch feedback is a key component of making this learning problem tractable.
arXiv Detail & Related papers (2021-02-22T17:33:51Z) - Living in the Physics and Machine Learning Interplay for Earth
Observation [7.669855697331746]
Inferences mean understanding variables relations, deriving models that are physically interpretable.
Machine learning models alone are excellent approximators, but very often do not respect the most elementary laws of physics.
This is a collective long-term AI agenda towards developing and applying algorithms capable of discovering knowledge in the Earth system.
arXiv Detail & Related papers (2020-10-18T16:58:20Z) - Learning Physical Constraints with Neural Projections [16.09436906471513]
We propose a new family of neural networks to predict the behaviors of physical systems by learning their underpinning constraints.
A neural projection operator lies at the heart of our approach, composed of a lightweight network with an embedded recursion architecture.
We demonstrated the efficacy of our approach by learning a set of challenging physical systems all in a unified and simple fashion.
arXiv Detail & Related papers (2020-06-23T04:19:04Z) - Learning to Simulate Complex Physics with Graph Networks [68.43901833812448]
We present a machine learning framework and model implementation that can learn to simulate a wide variety of challenging physical domains.
Our framework---which we term "Graph Network-based Simulators" (GNS)--represents the state of a physical system with particles, expressed as nodes in a graph, and computes dynamics via learned message-passing.
Our results show that our model can generalize from single-timestep predictions with thousands of particles during training, to different initial conditions, thousands of timesteps, and at least an order of magnitude more particles at test time.
arXiv Detail & Related papers (2020-02-21T16:44:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.