Decomposing heterogeneous dynamical systems with graph neural networks
- URL: http://arxiv.org/abs/2407.19160v1
- Date: Sat, 27 Jul 2024 04:03:12 GMT
- Title: Decomposing heterogeneous dynamical systems with graph neural networks
- Authors: Cédric Allier, Magdalena C. Schneider, Michael Innerberger, Larissa Heinrich, John A. Bogovic, Stephan Saalfeld,
- Abstract summary: We show that graph neural networks can be designed to jointly learn the interaction rules and the structure of the heterogeneous system.
The learned latent structure and dynamics can be used to virtually decompose the complex system.
- Score: 0.16492989697868887
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Natural physical, chemical, and biological dynamical systems are often complex, with heterogeneous components interacting in diverse ways. We show that graph neural networks can be designed to jointly learn the interaction rules and the structure of the heterogeneity from data alone. The learned latent structure and dynamics can be used to virtually decompose the complex system which is necessary to parameterize and infer the underlying governing equations. We tested the approach with simulation experiments of moving particles and vector fields that interact with each other. While our current aim is to better understand and validate the approach with simulated data, we anticipate it to become a generally applicable tool to uncover the governing rules underlying complex dynamics observed in nature.
Related papers
- Integrating GNN and Neural ODEs for Estimating Non-Reciprocal Two-Body Interactions in Mixed-Species Collective Motion [0.0]
We present a novel deep learning framework for estimating the underlying equations of motion from observed trajectories.
Our framework integrates graph neural networks with neural differential equations, enabling effective prediction of two-body interactions.
arXiv Detail & Related papers (2024-05-26T09:47:17Z) - Inferring Relational Potentials in Interacting Systems [56.498417950856904]
We propose Neural Interaction Inference with Potentials (NIIP) as an alternative approach to discover such interactions.
NIIP assigns low energy to the subset of trajectories which respect the relational constraints observed.
It allows trajectory manipulation, such as interchanging interaction types across separately trained models, as well as trajectory forecasting.
arXiv Detail & Related papers (2023-10-23T00:44:17Z) - Learning Latent Dynamics via Invariant Decomposition and
(Spatio-)Temporal Transformers [0.6767885381740952]
We propose a method for learning dynamical systems from high-dimensional empirical data.
We focus on the setting in which data are available from multiple different instances of a system.
We study behaviour through simple theoretical analyses and extensive experiments on synthetic and real-world datasets.
arXiv Detail & Related papers (2023-06-21T07:52:07Z) - Towards Complex Dynamic Physics System Simulation with Graph Neural ODEs [75.7104463046767]
This paper proposes a novel learning based simulation model that characterizes the varying spatial and temporal dependencies in particle systems.
We empirically evaluate GNSTODE's simulation performance on two real-world particle systems, Gravity and Coulomb.
arXiv Detail & Related papers (2023-05-21T03:51:03Z) - Collective Relational Inference for learning heterogeneous interactions [8.215734914005845]
We propose a novel probabilistic method for relational inference, which possesses two distinctive characteristics compared to existing methods.
We evaluate the proposed methodology across several benchmark datasets and demonstrate that it outperforms existing methods in accurately inferring interaction types.
Overall the proposed model is data-efficient and generalizable to large systems when trained on smaller ones.
arXiv Detail & Related papers (2023-04-30T19:45:04Z) - Learning Heterogeneous Interaction Strengths by Trajectory Prediction
with Graph Neural Network [0.0]
We propose the attentive relational inference network (RAIN) to infer continuously weighted interaction graphs without any ground-truth interaction strengths.
We show that our RAIN model with the PA mechanism accurately infers continuous interaction strengths for simulated physical systems in an unsupervised manner.
arXiv Detail & Related papers (2022-08-28T09:13:33Z) - Learning Individual Interactions from Population Dynamics with Discrete-Event Simulation Model [9.827590402695341]
We will explore the possibility of learning a discrete-event simulation representation of complex system dynamics.
Our results show that the algorithm can data-efficiently capture complex network dynamics in several fields with meaningful events.
arXiv Detail & Related papers (2022-05-04T21:33:56Z) - Capturing Actionable Dynamics with Structured Latent Ordinary
Differential Equations [68.62843292346813]
We propose a structured latent ODE model that captures system input variations within its latent representation.
Building on a static variable specification, our model learns factors of variation for each input to the system, thus separating the effects of the system inputs in the latent space.
arXiv Detail & Related papers (2022-02-25T20:00:56Z) - Constructing Neural Network-Based Models for Simulating Dynamical
Systems [59.0861954179401]
Data-driven modeling is an alternative paradigm that seeks to learn an approximation of the dynamics of a system using observations of the true system.
This paper provides a survey of the different ways to construct models of dynamical systems using neural networks.
In addition to the basic overview, we review the related literature and outline the most significant challenges from numerical simulations that this modeling paradigm must overcome.
arXiv Detail & Related papers (2021-11-02T10:51:42Z) - Learning Contact Dynamics using Physically Structured Neural Networks [81.73947303886753]
We use connections between deep neural networks and differential equations to design a family of deep network architectures for representing contact dynamics between objects.
We show that these networks can learn discontinuous contact events in a data-efficient manner from noisy observations.
Our results indicate that an idealised form of touch feedback is a key component of making this learning problem tractable.
arXiv Detail & Related papers (2021-02-22T17:33:51Z) - Euclideanizing Flows: Diffeomorphic Reduction for Learning Stable
Dynamical Systems [74.80320120264459]
We present an approach to learn such motions from a limited number of human demonstrations.
The complex motions are encoded as rollouts of a stable dynamical system.
The efficacy of this approach is demonstrated through validation on an established benchmark as well demonstrations collected on a real-world robotic system.
arXiv Detail & Related papers (2020-05-27T03:51:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.