Generalizable Person Re-identification via Balancing Alignment and Uniformity
- URL: http://arxiv.org/abs/2411.11471v1
- Date: Mon, 18 Nov 2024 11:13:30 GMT
- Title: Generalizable Person Re-identification via Balancing Alignment and Uniformity
- Authors: Yoonki Cho, Jaeyoon Kim, Woo Jae Kim, Junsik Jung, Sung-eui Yoon,
- Abstract summary: Domain generalizable person re-identification (DG re-ID) aims to learn discriminative representations that are robust to distributional shifts.
Certain augmentations exhibit a polarized effect in this task, enhancing in-distribution performance while deteriorating out-of-distribution performance.
We propose a novel framework, Balancing Alignment and Uniformity (BAU), which effectively mitigates this effect by maintaining a balance between alignment and uniformity.
- Score: 22.328800139066914
- License:
- Abstract: Domain generalizable person re-identification (DG re-ID) aims to learn discriminative representations that are robust to distributional shifts. While data augmentation is a straightforward solution to improve generalization, certain augmentations exhibit a polarized effect in this task, enhancing in-distribution performance while deteriorating out-of-distribution performance. In this paper, we investigate this phenomenon and reveal that it leads to sparse representation spaces with reduced uniformity. To address this issue, we propose a novel framework, Balancing Alignment and Uniformity (BAU), which effectively mitigates this effect by maintaining a balance between alignment and uniformity. Specifically, BAU incorporates alignment and uniformity losses applied to both original and augmented images and integrates a weighting strategy to assess the reliability of augmented samples, further improving the alignment loss. Additionally, we introduce a domain-specific uniformity loss that promotes uniformity within each source domain, thereby enhancing the learning of domain-invariant features. Extensive experimental results demonstrate that BAU effectively exploits the advantages of data augmentation, which previous studies could not fully utilize, and achieves state-of-the-art performance without requiring complex training procedures. The code is available at \url{https://github.com/yoonkicho/BAU}.
Related papers
- Supervised Contrastive Learning with Heterogeneous Similarity for
Distribution Shifts [3.7819322027528113]
We propose a new regularization using the supervised contrastive learning to prevent such overfitting and to train models that do not degrade their performance under the distribution shifts.
Experiments on benchmark datasets that emulate distribution shifts, including subpopulation shift and domain generalization, demonstrate the advantage of the proposed method.
arXiv Detail & Related papers (2023-04-07T01:45:09Z) - Balancing Discriminability and Transferability for Source-Free Domain
Adaptation [55.143687986324935]
Conventional domain adaptation (DA) techniques aim to improve domain transferability by learning domain-invariant representations.
The requirement of simultaneous access to labeled source and unlabeled target renders them unsuitable for the challenging source-free DA setting.
We derive novel insights to show that a mixup between original and corresponding translated generic samples enhances the discriminability-transferability trade-off.
arXiv Detail & Related papers (2022-06-16T09:06:22Z) - Feature Diversity Learning with Sample Dropout for Unsupervised Domain
Adaptive Person Re-identification [0.0]
This paper proposes a new approach to learn the feature representation with better generalization ability through limiting noisy pseudo labels.
We put forward a brand-new method referred as to Feature Diversity Learning (FDL) under the classic mutual-teaching architecture.
Experimental results show that our proposed FDL-SD achieves the state-of-the-art performance on multiple benchmark datasets.
arXiv Detail & Related papers (2022-01-25T10:10:48Z) - Revisiting Consistency Regularization for Semi-Supervised Learning [80.28461584135967]
We propose an improved consistency regularization framework by a simple yet effective technique, FeatDistLoss.
Experimental results show that our model defines a new state of the art for various datasets and settings.
arXiv Detail & Related papers (2021-12-10T20:46:13Z) - Implicit Gradient Alignment in Distributed and Federated Learning [39.61762498388211]
A major obstacle to achieving global convergence in distributed and federated learning is misalignment of gradients across clients.
We propose a novel GradAlign algorithm that induces the same implicit regularization while allowing the use of arbitrarily large batches in each update.
arXiv Detail & Related papers (2021-06-25T22:01:35Z) - Supercharging Imbalanced Data Learning With Energy-based Contrastive
Representation Transfer [72.5190560787569]
In computer vision, learning from long tailed datasets is a recurring theme, especially for natural image datasets.
Our proposal posits a meta-distributional scenario, where the data generating mechanism is invariant across the label-conditional feature distributions.
This allows us to leverage a causal data inflation procedure to enlarge the representation of minority classes.
arXiv Detail & Related papers (2020-11-25T00:13:11Z) - Learning Invariant Representations and Risks for Semi-supervised Domain
Adaptation [109.73983088432364]
We propose the first method that aims to simultaneously learn invariant representations and risks under the setting of semi-supervised domain adaptation (Semi-DA)
We introduce the LIRR algorithm for jointly textbfLearning textbfInvariant textbfRepresentations and textbfRisks.
arXiv Detail & Related papers (2020-10-09T15:42:35Z) - Global Distance-distributions Separation for Unsupervised Person
Re-identification [93.39253443415392]
Existing unsupervised ReID approaches often fail in correctly identifying the positive samples and negative samples through the distance-based matching/ranking.
We introduce a global distance-distributions separation constraint over the two distributions to encourage the clear separation of positive and negative samples from a global view.
We show that our method leads to significant improvement over the baselines and achieves the state-of-the-art performance.
arXiv Detail & Related papers (2020-06-01T07:05:39Z) - When Relation Networks meet GANs: Relation GANs with Triplet Loss [110.7572918636599]
Training stability is still a lingering concern of generative adversarial networks (GANs)
In this paper, we explore a relation network architecture for the discriminator and design a triplet loss which performs better generalization and stability.
Experiments on benchmark datasets show that the proposed relation discriminator and new loss can provide significant improvement on variable vision tasks.
arXiv Detail & Related papers (2020-02-24T11:35:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.