Graph Neural Networks for Quantifying Compatibility Mechanisms in Traditional Chinese Medicine
- URL: http://arxiv.org/abs/2411.11474v2
- Date: Tue, 10 Dec 2024 07:14:56 GMT
- Title: Graph Neural Networks for Quantifying Compatibility Mechanisms in Traditional Chinese Medicine
- Authors: Jingqi Zeng, Xiaobin Jia,
- Abstract summary: We develop a TCM knowledge graph that bridges traditional TCM theory and modern biomedical science.<n>With interpretable models, open-source data, and code, this study provides robust tools for advancing TCM theory and drug discovery.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Traditional Chinese Medicine (TCM) involves complex compatibility mechanisms characterized by multi-component and multi-target interactions, which are challenging to quantify. To address this challenge, we applied graph artificial intelligence to develop a TCM multi-dimensional knowledge graph that bridges traditional TCM theory and modern biomedical science (https://zenodo.org/records/13763953 ). Using feature engineering and embedding, we processed key TCM terminology and Chinese herbal pieces (CHP), introducing medicinal properties as virtual nodes and employing graph neural networks with attention mechanisms to model and analyze 6,080 Chinese herbal formulas (CHF). Our method quantitatively assessed the roles of CHP within CHF and was validated using 215 CHF designed for COVID-19 management. With interpretable models, open-source data, and code (https://github.com/ZENGJingqi/GraphAI-for-TCM ), this study provides robust tools for advancing TCM theory and drug discovery.
Related papers
- OpenTCM: A GraphRAG-Empowered LLM-based System for Traditional Chinese Medicine Knowledge Retrieval and Diagnosis [2.639291045535649]
Traditional Chinese Medicine (TCM) represents a rich repository of ancient medical knowledge that continues to play an important role in modern healthcare.
Due to the complexity and breadth of the TCM literature, the integration of AI technologies is critical for its modernization and broader accessibility.
In this paper, we develop OpenTCM, an LLM-based system that combines a domain-specific TCM knowledge graph and Graph-based Retrieval-Augmented Generation (GraphRAG)
arXiv Detail & Related papers (2025-04-28T08:04:44Z) - Heterogeneous network drug-target interaction prediction model based on graph wavelet transform and multi-level contrastive learning [8.154286666697312]
This study proposes a heterogeneous network drug target interaction prediction framework.
It integrates graph neural network and multi scale signal processing technology to construct a model with both efficient prediction and multi level interpretability.
Experimental results show that our framework shows excellent prediction performance on all datasets.
arXiv Detail & Related papers (2025-04-27T09:29:50Z) - BianCang: A Traditional Chinese Medicine Large Language Model [22.582027277167047]
BianCang is a TCM-specific large language model (LLMs) that first injects domain-specific knowledge and then aligns it through targeted stimulation.
We constructed pre-training corpora, instruction-aligned datasets based on real hospital records, and the ChP-TCM dataset derived from the Pharmacopoeia of the People's Republic of China.
We compiled extensive TCM and medical corpora for continuous pre-training and supervised fine-tuning, building a comprehensive dataset to refine the model's understanding of TCM.
arXiv Detail & Related papers (2024-11-17T10:17:01Z) - Causal Representation Learning from Multimodal Biomedical Observations [57.00712157758845]
We develop flexible identification conditions for multimodal data and principled methods to facilitate the understanding of biomedical datasets.
Key theoretical contribution is the structural sparsity of causal connections between modalities.
Results on a real-world human phenotype dataset are consistent with established biomedical research.
arXiv Detail & Related papers (2024-11-10T16:40:27Z) - Intelligent Understanding of Large Language Models in Traditional Chinese Medicine Based on Prompt Engineering Framework [3.990633038739491]
We propose TCM-Prompt, a framework that integrates various pre-trained language models (PLMs), templates, tokenization, and verbalization methods.
We conducted experiments on disease classification, syndrome identification, herbal medicine recommendation, and general NLP tasks.
arXiv Detail & Related papers (2024-10-25T10:24:30Z) - CNN-Transformer Rectified Collaborative Learning for Medical Image Segmentation [60.08541107831459]
This paper proposes a CNN-Transformer rectified collaborative learning framework to learn stronger CNN-based and Transformer-based models for medical image segmentation.
Specifically, we propose a rectified logit-wise collaborative learning (RLCL) strategy which introduces the ground truth to adaptively select and rectify the wrong regions in student soft labels.
We also propose a class-aware feature-wise collaborative learning (CFCL) strategy to achieve effective knowledge transfer between CNN-based and Transformer-based models in the feature space.
arXiv Detail & Related papers (2024-08-25T01:27:35Z) - Learning to Denoise Biomedical Knowledge Graph for Robust Molecular Interaction Prediction [50.7901190642594]
We propose BioKDN (Biomedical Knowledge Graph Denoising Network) for robust molecular interaction prediction.
BioKDN refines the reliable structure of local subgraphs by denoising noisy links in a learnable manner.
It maintains consistent and robust semantics by smoothing relations around the target interaction.
arXiv Detail & Related papers (2023-12-09T07:08:00Z) - TCM-GPT: Efficient Pre-training of Large Language Models for Domain
Adaptation in Traditional Chinese Medicine [11.537289359051975]
We propose a novel TCMDA (TCM Domain Adaptation) approach, efficient pre-training with domain-specific corpus.
Specifically, we first construct a large TCM-specific corpus, TCM-Corpus-1B, by identifying domain keywords and retreving from general corpus.
Then, our TCMDA leverages the LoRA which freezes the pretrained model's weights and uses rank decomposition matrices to efficiently train specific dense layers for pre-training and fine-tuning.
arXiv Detail & Related papers (2023-11-03T08:54:50Z) - Incremental Cross-view Mutual Distillation for Self-supervised Medical
CT Synthesis [88.39466012709205]
This paper builds a novel medical slice to increase the between-slice resolution.
Considering that the ground-truth intermediate medical slices are always absent in clinical practice, we introduce the incremental cross-view mutual distillation strategy.
Our method outperforms state-of-the-art algorithms by clear margins.
arXiv Detail & Related papers (2021-12-20T03:38:37Z) - Lung Cancer Lesion Detection in Histopathology Images Using Graph-Based
Sparse PCA Network [93.22587316229954]
We propose a graph-based sparse principal component analysis (GS-PCA) network, for automated detection of cancerous lesions on histological lung slides stained by hematoxylin and eosin (H&E)
We evaluate the performance of the proposed algorithm on H&E slides obtained from an SVM K-rasG12D lung cancer mouse model using precision/recall rates, F-score, Tanimoto coefficient, and area under the curve (AUC) of the receiver operator characteristic (ROC)
arXiv Detail & Related papers (2021-10-27T19:28:36Z) - Heterogeneous Graph based Deep Learning for Biomedical Network Link
Prediction [7.628651624423363]
We propose a Graph Pair based Link Prediction model (GPLP) for predicting biomedical network links.
InP, 1-hop subgraphs extracted from known network interaction matrix is learnt to predict missing links.
Our method demonstrates the potential applications in other biomedical networks.
arXiv Detail & Related papers (2021-01-28T07:35:29Z) - Extracting a Knowledge Base of Mechanisms from COVID-19 Papers [50.17242035034729]
We pursue the construction of a knowledge base (KB) of mechanisms.
We develop a broad, unified schema that strikes a balance between relevance and breadth.
Experiments demonstrate the utility of our KB in supporting interdisciplinary scientific search over COVID-19 literature.
arXiv Detail & Related papers (2020-10-08T07:54:14Z) - Confidence-guided Lesion Mask-based Simultaneous Synthesis of Anatomic
and Molecular MR Images in Patients with Post-treatment Malignant Gliomas [65.64363834322333]
Confidence Guided SAMR (CG-SAMR) synthesizes data from lesion information to multi-modal anatomic sequences.
module guides the synthesis based on confidence measure about the intermediate results.
experiments on real clinical data demonstrate that the proposed model can perform better than the state-of-theart synthesis methods.
arXiv Detail & Related papers (2020-08-06T20:20:22Z) - Interpretable multimodal fusion networks reveal mechanisms of brain
cognition [26.954460880062506]
We develop an interpretable multimodal fusion model, gCAM-CCL, which can perform automated diagnosis and result interpretation simultaneously.
We validate the gCAM-CCL model on a brain imaging-genetic study, and show gCAM-CCL's performed well for both classification and mechanism analysis.
arXiv Detail & Related papers (2020-06-16T18:52:50Z) - A Systematic Approach to Featurization for Cancer Drug Sensitivity
Predictions with Deep Learning [49.86828302591469]
We train >35,000 neural network models, sweeping over common featurization techniques.
We found the RNA-seq to be highly redundant and informative even with subsets larger than 128 features.
arXiv Detail & Related papers (2020-04-30T20:42:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.