Intelligent Understanding of Large Language Models in Traditional Chinese Medicine Based on Prompt Engineering Framework
- URL: http://arxiv.org/abs/2410.19451v1
- Date: Fri, 25 Oct 2024 10:24:30 GMT
- Title: Intelligent Understanding of Large Language Models in Traditional Chinese Medicine Based on Prompt Engineering Framework
- Authors: Yirui Chen, Qinyu Xiao, Jia Yi, Jing Chen, Mengyang Wang,
- Abstract summary: We propose TCM-Prompt, a framework that integrates various pre-trained language models (PLMs), templates, tokenization, and verbalization methods.
We conducted experiments on disease classification, syndrome identification, herbal medicine recommendation, and general NLP tasks.
- Score: 3.990633038739491
- License:
- Abstract: This paper explores the application of prompt engineering to enhance the performance of large language models (LLMs) in the domain of Traditional Chinese Medicine (TCM). We propose TCM-Prompt, a framework that integrates various pre-trained language models (PLMs), templates, tokenization, and verbalization methods, allowing researchers to easily construct and fine-tune models for specific TCM-related tasks. We conducted experiments on disease classification, syndrome identification, herbal medicine recommendation, and general NLP tasks, demonstrating the effectiveness and superiority of our approach compared to baseline methods. Our findings suggest that prompt engineering is a promising technique for improving the performance of LLMs in specialized domains like TCM, with potential applications in digitalization, modernization, and personalized medicine.
Related papers
- Demystifying Large Language Models for Medicine: A Primer [50.83806796466396]
Large language models (LLMs) represent a transformative class of AI tools capable of revolutionizing various aspects of healthcare.
This tutorial aims to equip healthcare professionals with the tools necessary to effectively integrate LLMs into clinical practice.
arXiv Detail & Related papers (2024-10-24T15:41:56Z) - RuleAlign: Making Large Language Models Better Physicians with Diagnostic Rule Alignment [54.91736546490813]
We introduce the RuleAlign framework, designed to align Large Language Models with specific diagnostic rules.
We develop a medical dialogue dataset comprising rule-based communications between patients and physicians.
Experimental results demonstrate the effectiveness of the proposed approach.
arXiv Detail & Related papers (2024-08-22T17:44:40Z) - LLMs-in-the-loop Part-1: Expert Small AI Models for Bio-Medical Text Translation [0.0]
This study introduces a novel "LLMs-in-the-loop" approach to develop supervised neural machine translation models optimized for medical texts.
Custom parallel corpora in six languages were compiled from scientific articles, synthetically generated clinical documents, and medical texts.
Our MarianMT-based models outperform Google Translate, DeepL, and GPT-4-Turbo.
arXiv Detail & Related papers (2024-07-16T19:32:23Z) - PediatricsGPT: Large Language Models as Chinese Medical Assistants for Pediatric Applications [22.175201525690493]
This paper builds PedCorpus, a high-quality dataset of over 300,000 multi-task instructions from pediatric textbooks, guidelines, and knowledge graph resources to fulfil diverse diagnostic demands.
Upon well-designed PedCorpus, we propose PediatricsGPT, the first Chinese pediatric LLM assistant built on a systematic and robust training pipeline.
arXiv Detail & Related papers (2024-05-29T16:59:38Z) - MRC-based Nested Medical NER with Co-prediction and Adaptive Pre-training [0.38498367961730184]
We propose a medical NER model based on Machine Reading (MRC), which uses a task-adaptive pre-training strategy to improve the model's capability in the medical field.
Our proposed model outperforms the compared state-of-the-art (SOTA) models.
arXiv Detail & Related papers (2024-03-23T11:14:02Z) - Large Language Model Distilling Medication Recommendation Model [61.89754499292561]
We harness the powerful semantic comprehension and input-agnostic characteristics of Large Language Models (LLMs)
Our research aims to transform existing medication recommendation methodologies using LLMs.
To mitigate this, we have developed a feature-level knowledge distillation technique, which transfers the LLM's proficiency to a more compact model.
arXiv Detail & Related papers (2024-02-05T08:25:22Z) - Diversifying Knowledge Enhancement of Biomedical Language Models using
Adapter Modules and Knowledge Graphs [54.223394825528665]
We develop an approach that uses lightweight adapter modules to inject structured biomedical knowledge into pre-trained language models.
We use two large KGs, the biomedical knowledge system UMLS and the novel biochemical OntoChem, with two prominent biomedical PLMs, PubMedBERT and BioLinkBERT.
We show that our methodology leads to performance improvements in several instances while keeping requirements in computing power low.
arXiv Detail & Related papers (2023-12-21T14:26:57Z) - ChiMed-GPT: A Chinese Medical Large Language Model with Full Training Regime and Better Alignment to Human Preferences [51.66185471742271]
We propose ChiMed-GPT, a benchmark LLM designed explicitly for Chinese medical domain.
ChiMed-GPT undergoes a comprehensive training regime with pre-training, SFT, and RLHF.
We analyze possible biases through prompting ChiMed-GPT to perform attitude scales regarding discrimination of patients.
arXiv Detail & Related papers (2023-11-10T12:25:32Z) - TCM-GPT: Efficient Pre-training of Large Language Models for Domain
Adaptation in Traditional Chinese Medicine [11.537289359051975]
We propose a novel TCMDA (TCM Domain Adaptation) approach, efficient pre-training with domain-specific corpus.
Specifically, we first construct a large TCM-specific corpus, TCM-Corpus-1B, by identifying domain keywords and retreving from general corpus.
Then, our TCMDA leverages the LoRA which freezes the pretrained model's weights and uses rank decomposition matrices to efficiently train specific dense layers for pre-training and fine-tuning.
arXiv Detail & Related papers (2023-11-03T08:54:50Z) - UmlsBERT: Clinical Domain Knowledge Augmentation of Contextual
Embeddings Using the Unified Medical Language System Metathesaurus [73.86656026386038]
We introduce UmlsBERT, a contextual embedding model that integrates domain knowledge during the pre-training process.
By applying these two strategies, UmlsBERT can encode clinical domain knowledge into word embeddings and outperform existing domain-specific models.
arXiv Detail & Related papers (2020-10-20T15:56:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.