Collaborative Contrastive Network for Click-Through Rate Prediction
- URL: http://arxiv.org/abs/2411.11508v1
- Date: Mon, 18 Nov 2024 12:12:47 GMT
- Title: Collaborative Contrastive Network for Click-Through Rate Prediction
- Authors: Chen Gao, Zixin Zhao, Sihao Hu, Lv Shao, Tong Liu,
- Abstract summary: We introduce a more general and robust CTR prediction approach, dubbed Collaborative Contrastive Network (CCN)
CCN learns to identify two item clusters that can represent the user's interests and disinterests.
Online A/B testing on large-scale real-world data demonstrates that CCN sets a new state-of-the-art performance on Taobao, boosting CTR by 12.3% and order volume by 12.7%.
- Score: 21.19413982573744
- License:
- Abstract: E-commerce platforms provide entrances for customers to enter mini-apps to meet their specific shopping needs. At the entrance of a mini-app, a trigger item recommended based on customers' historical preferences, is displayed to attract customers to enter the mini-app. Existing Click-Through Rate (CTR) prediction approaches have two significant weaknesses: (i) A portion of customer entries is driven by their interest in the mini-app itself rather than the trigger item. In such cases, approaches highly hinging on the trigger item tend to recommend similar items, thus misunderstanding the customers' real intention; (ii) Approaches that consider customers' intention toward mini-apps, require the regular existence of mini-apps for customers to cultivate routine shopping habits, making such approaches less robust for mini-apps that are available for only short periods (1 or 3 days) in Explosive Promotional Scenarios (EPS), such as the Black Friday and China's Double 11 Shopping Carnival. To address the above-mentioned issues, we introduce a more general and robust CTR prediction approach, dubbed Collaborative Contrastive Network (CCN). Given a user, CCN learns to identify two item clusters that can represent the user's interests and disinterests, via leveraging the collaborative relationship of co-click/co-non-click or the non-collaborative relationship of mono-click as the supervision signal for contrastive learning. This paradigm does not need to explicitly estimate user's binary entry intention and avoids amplifying the impact of the trigger item. Online A/B testing on large-scale real-world data demonstrates that CCN sets a new state-of-the-art performance on Taobao, boosting CTR by 12.3% and order volume by 12.7%.
Related papers
- ClickTrack: Towards Real-time Interactive Single Object Tracking [58.52366657445601]
We propose a new paradigm for single object tracking algorithms, ClickTrack, a new paradigm using clicking interaction for real-time scenarios.
To address ambiguity in certain special scenarios, we designed the Guided Click Refiner(GCR), which accepts point and optional textual information as inputs.
Experiments on LaSOT and GOT-10k benchmarks show that tracker combined with GCR achieves stable performance in real-time interactive scenarios.
arXiv Detail & Related papers (2024-11-20T10:30:33Z) - Warming Up Cold-Start CTR Prediction by Learning Item-Specific Feature Interactions [45.43816499513853]
EmerG is a novel approach that warms up cold-start CTR prediction by learning item-specific feature interaction patterns.
EmerG consistently performs the best given no, a few and sufficient instances of new items.
arXiv Detail & Related papers (2024-07-14T07:58:13Z) - RAT: Retrieval-Augmented Transformer for Click-Through Rate Prediction [68.34355552090103]
This paper develops a Retrieval-Augmented Transformer (RAT), aiming to acquire fine-grained feature interactions within and across samples.
We then build Transformer layers with cascaded attention to capture both intra- and cross-sample feature interactions.
Experiments on real-world datasets substantiate the effectiveness of RAT and suggest its advantage in long-tail scenarios.
arXiv Detail & Related papers (2024-04-02T19:14:23Z) - Deep Evolutional Instant Interest Network for CTR Prediction in Trigger-Induced Recommendation [28.29435760797856]
We propose a novel method -- Deep Evolutional Instant Interest Network (DEI2N) -- for click-through rate prediction in TIR scenarios.
We design a User Instant Interest Modeling Layer to predict the dynamic change of the intensity of instant interest when the user scrolls down.
We evaluate our method on several offline and real-world industrial datasets.
arXiv Detail & Related papers (2024-01-15T15:27:24Z) - Deep Intention-Aware Network for Click-Through Rate Prediction [9.00554150844311]
Trigger items displayed on entrance icons can attract more entering.
Traditional Click-Through-Rate (CTR) prediction models ignore user instant interest in trigger item.
Deep Intention-Aware Network (DIAN) can both accurately predict user intention and dynamically balance the results.
arXiv Detail & Related papers (2022-11-16T03:55:18Z) - Deep Interest Highlight Network for Click-Through Rate Prediction in
Trigger-Induced Recommendation [15.490873353133363]
We present a new recommendation problem, Trigger-Induced Recommendation (TIR), where users' instant interest can be explicitly induced with a trigger item.
To tackle the problem, we propose a novel recommendation method named Deep Interest Highlight Network (DIHN) for Click-Through Rate (CTR) prediction.
It has three main components including 1) User Intent Network (UIN), which responds to generate a precise probability score to predict user's intent on the trigger item; 2) Fusion Embedding Module (FEM), which adaptively fuses trigger item and target item embeddings based on the prediction from UIN; and (3)
arXiv Detail & Related papers (2022-02-05T08:40:30Z) - Masked Transformer for Neighhourhood-aware Click-Through Rate Prediction [74.52904110197004]
We propose Neighbor-Interaction based CTR prediction, which put this task into a Heterogeneous Information Network (HIN) setting.
In order to enhance the representation of the local neighbourhood, we consider four types of topological interaction among the nodes.
We conduct comprehensive experiments on two real world datasets and the experimental results show that our proposed method outperforms state-of-the-art CTR models significantly.
arXiv Detail & Related papers (2022-01-25T12:44:23Z) - Aggregated Customer Engagement Model [0.571097144710995]
E-commerce websites use machine learned ranking models to serve shopping results to customers.
New or under-impressed products do not have enough customer engagement signals and end up at a disadvantage when being ranked alongside popular products.
We propose a novel method for data curation that aggregates all customer engagements within a day for the same query to use as input training data.
arXiv Detail & Related papers (2021-08-17T20:58:10Z) - Multimodal and Contrastive Learning for Click Fraud Detection [3.958603405726725]
We propose a Multimodal and Contrastive learning network for Click Fraud detection (MCCF)
MCCF jointly utilizes wide and deep features, behavior sequence and heterogeneous network to distill click representations.
With the real-world datasets containing 2.54 million clicks on Alibaba platform, we investigate the effectiveness of MCCF.
arXiv Detail & Related papers (2021-05-08T03:03:11Z) - Learning over no-Preferred and Preferred Sequence of items for Robust
Recommendation [66.8722561224499]
We propose a theoretically founded sequential strategy for training large-scale Recommender Systems (RS) over implicit feedback.
We present two variants of this strategy where model parameters are updated using either the momentum method or a gradient-based approach.
arXiv Detail & Related papers (2020-12-12T22:10:15Z) - FAIRS -- Soft Focus Generator and Attention for Robust Object
Segmentation from Extreme Points [70.65563691392987]
We present a new approach to generate object segmentation from user inputs in the form of extreme points and corrective clicks.
We demonstrate our method's ability to generate high-quality training data as well as its scalability in incorporating extreme points, guiding clicks, and corrective clicks in a principled manner.
arXiv Detail & Related papers (2020-04-04T22:25:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.