You Are What You Bought: Generating Customer Personas for E-commerce Applications
- URL: http://arxiv.org/abs/2504.17304v1
- Date: Thu, 24 Apr 2025 06:59:16 GMT
- Title: You Are What You Bought: Generating Customer Personas for E-commerce Applications
- Authors: Yimin Shi, Yang Fei, Shiqi Zhang, Haixun Wang, Xiaokui Xiao,
- Abstract summary: This paper introduces the concept of the customer persona.<n>A customer persona provides a multi-faceted and human-readable characterization of specific purchase behaviors and preferences.<n>We evaluate the performance of our persona-based representation in terms of accuracy and robustness for recommendation and customer segmentation tasks.<n>Most notably, we find that integrating customer persona representations improves the state-of-the-art graph-based recommendation model by up to 12% in terms of NDCG@K and F1-Score@K.
- Score: 22.012818753574905
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In e-commerce, user representations are essential for various applications. Existing methods often use deep learning techniques to convert customer behaviors into implicit embeddings. However, these embeddings are difficult to understand and integrate with external knowledge, limiting the effectiveness of applications such as customer segmentation, search navigation, and product recommendations. To address this, our paper introduces the concept of the customer persona. Condensed from a customer's numerous purchasing histories, a customer persona provides a multi-faceted and human-readable characterization of specific purchase behaviors and preferences, such as Busy Parents or Bargain Hunters. This work then focuses on representing each customer by multiple personas from a predefined set, achieving readable and informative explicit user representations. To this end, we propose an effective and efficient solution GPLR. To ensure effectiveness, GPLR leverages pre-trained LLMs to infer personas for customers. To reduce overhead, GPLR applies LLM-based labeling to only a fraction of users and utilizes a random walk technique to predict personas for the remaining customers. We further propose RevAff, which provides an absolute error $\epsilon$ guarantee while improving the time complexity of the exact solution by a factor of at least $O(\frac{\epsilon\cdot|E|N}{|E|+N\log N})$, where $N$ represents the number of customers and products, and $E$ represents the interactions between them. We evaluate the performance of our persona-based representation in terms of accuracy and robustness for recommendation and customer segmentation tasks using three real-world e-commerce datasets. Most notably, we find that integrating customer persona representations improves the state-of-the-art graph convolution-based recommendation model by up to 12% in terms of NDCG@K and F1-Score@K.
Related papers
- Personalized Federated Knowledge Graph Embedding with Client-Wise Relation Graph [49.66272783945571]
We propose Personalized Federated knowledge graph Embedding with client-wise relation graph.
PFedEG learns personalized supplementary knowledge for each client by amalgamating entity embedding from its neighboring clients.
We conduct extensive experiments on four benchmark datasets to evaluate our method against state-of-the-art models.
arXiv Detail & Related papers (2024-06-17T17:44:53Z) - Emulating Full Participation: An Effective and Fair Client Selection Strategy for Federated Learning [50.060154488277036]
In federated learning, client selection is a critical problem that significantly impacts both model performance and fairness.<n>We propose two guiding principles that tackle the inherent conflict between the two metrics while reinforcing each other.<n>Our approach adaptively enhances this diversity by selecting clients based on their data distributions, thereby improving both model performance and fairness.
arXiv Detail & Related papers (2024-05-22T12:27:24Z) - A Meta-learning based Stacked Regression Approach for Customer Lifetime
Value Prediction [3.6002910014361857]
Customer Lifetime Value (CLV) is the total monetary value of transactions/purchases made by a customer with the business over an intended period of time.
CLV finds application in a number of distinct business domains such as Banking, Insurance, Online-entertainment, Gaming, and E-Commerce.
We propose a system which is able to qualify both as effective, and comprehensive yet simple and interpretable.
arXiv Detail & Related papers (2023-08-07T14:22:02Z) - Sequence-aware item recommendations for multiply repeated user-item
interactions [0.0]
We design a recommender system that induces the temporal dimension in the task of item recommendation.
It considers sequences of item interactions for each user in order to make recommendations.
This method is empirically shown to give highly accurate predictions of user-items interactions for all users in a retail environment.
arXiv Detail & Related papers (2023-04-02T17:06:07Z) - FilFL: Client Filtering for Optimized Client Participation in Federated Learning [71.46173076298957]
Federated learning enables clients to collaboratively train a model without exchanging local data.
Clients participating in the training process significantly impact the convergence rate, learning efficiency, and model generalization.
We propose a novel approach, client filtering, to improve model generalization and optimize client participation and training.
arXiv Detail & Related papers (2023-02-13T18:55:31Z) - A Hybrid Statistical-Machine Learning Approach for Analysing Online
Customer Behavior: An Empirical Study [2.126171264016785]
We develop a hybrid interpretable model to analyse 454,897 online customers' behavior for a particular product category at the largest online retailer in China, that is JD.
Our results reveal that customers' product choice is insensitive to the promised delivery time, but this factor significantly impacts customers' order quantity.
We identify product classes for which certain discounting approaches are more effective and provide recommendations on better use of different discounting tools.
arXiv Detail & Related papers (2022-12-01T19:37:29Z) - The Minority Matters: A Diversity-Promoting Collaborative Metric
Learning Algorithm [154.47590401735323]
Collaborative Metric Learning (CML) has recently emerged as a popular method in recommendation systems.
This paper focuses on a challenging scenario where a user has multiple categories of interests.
We propose a novel method called textitDiversity-Promoting Collaborative Metric Learning (DPCML)
arXiv Detail & Related papers (2022-09-30T08:02:18Z) - Characterization of Frequent Online Shoppers using Statistical Learning
with Sparsity [54.26540039514418]
This work reports a method to learn the shopping preferences of frequent shoppers to an online gift store by combining ideas from retail analytics and statistical learning with sparsity.
arXiv Detail & Related papers (2021-11-11T05:36:39Z) - Linear Speedup in Personalized Collaborative Learning [69.45124829480106]
Personalization in federated learning can improve the accuracy of a model for a user by trading off the model's bias.
We formalize the personalized collaborative learning problem as optimization of a user's objective.
We explore conditions under which we can optimally trade-off their bias for a reduction in variance.
arXiv Detail & Related papers (2021-11-10T22:12:52Z) - Low-Cost Algorithmic Recourse for Users With Uncertain Cost Functions [74.00030431081751]
We formalize the notion of user-specific cost functions and introduce a new method for identifying actionable recourses for users.
Our method satisfies up to 25.89 percentage points more users compared to strong baseline methods.
arXiv Detail & Related papers (2021-11-01T19:49:35Z) - Friendship is All we Need: A Multi-graph Embedding Approach for Modeling
Customer Behavior [1.181206257787103]
We propose a multi-graph embedding approach for creating a non-linear representation of customers.
We are able to predict users' future behavior with a reasonably high accuracy only by having the information of their friendship network.
arXiv Detail & Related papers (2020-10-06T14:50:05Z) - Maximizing Cumulative User Engagement in Sequential Recommendation: An
Online Optimization Perspective [26.18096797120916]
It is often needed to tradeoff two potentially conflicting objectives, that is, pursuing higher immediate user engagement and encouraging user browsing.
We propose a flexible and practical framework to explicitly tradeoff longer user browsing length and high immediate user engagement.
This approach is deployed at a large E-commerce platform, achieved over 7% improvement of cumulative clicks.
arXiv Detail & Related papers (2020-06-02T09:02:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.