Exploring LLMs for Verifying Technical System Specifications Against Requirements
- URL: http://arxiv.org/abs/2411.11582v1
- Date: Mon, 18 Nov 2024 13:59:29 GMT
- Title: Exploring LLMs for Verifying Technical System Specifications Against Requirements
- Authors: Lasse M. Reinpold, Marvin Schieseck, Lukas P. Wagner, Felix Gehlhoff, Alexander Fay,
- Abstract summary: The field of knowledge-based requirements engineering (KBRE) aims to support engineers by providing knowledge to assist in the elicitation, validation, and management of system requirements.
The advent of large language models (LLMs) opens new opportunities in the field of KBRE.
This work experimentally investigates the potential of LLMs in requirements verification.
- Score: 41.19948826527649
- License:
- Abstract: Requirements engineering is a knowledge intensive process and crucial for the success of engineering projects. The field of knowledge-based requirements engineering (KBRE) aims to support engineers by providing knowledge to assist in the elicitation, validation, and management of system requirements. The advent of large language models (LLMs) opens new opportunities in the field of KBRE. This work experimentally investigates the potential of LLMs in requirements verification. Therein, LLMs are provided with a set of requirements and a textual system specification and are prompted to assess which requirements are fulfilled by the system specification. Different experimental variables such as system specification complexity, the number of requirements, and prompting strategies were analyzed. Formal rule-based systems serve as a benchmark to compare LLM performance to. Requirements and system specifications are derived from the smart-grid domain. Results show that advanced LLMs, like GPT-4o and Claude 3.5 Sonnet, achieved f1-scores between 79 % and 94 % in identifying non-fulfilled requirements, indicating potential for LLMs to be leveraged for requirements verification.
Related papers
- Digital requirements engineering with an INCOSE-derived SysML meta-model [0.0]
We extend the Model-Based Structured Requirement SysML Profile to comply with the INCOSE Guide to Writing Requirements.
The resulting SysML Profile was applied in two system architecture models at NASA Jet Propulsion Laboratory.
arXiv Detail & Related papers (2024-10-12T03:06:13Z) - Can Long-Context Language Models Subsume Retrieval, RAG, SQL, and More? [54.667202878390526]
Long-context language models (LCLMs) have the potential to revolutionize our approach to tasks traditionally reliant on external tools like retrieval systems or databases.
We introduce LOFT, a benchmark of real-world tasks requiring context up to millions of tokens designed to evaluate LCLMs' performance on in-context retrieval and reasoning.
Our findings reveal LCLMs' surprising ability to rival state-of-the-art retrieval and RAG systems, despite never having been explicitly trained for these tasks.
arXiv Detail & Related papers (2024-06-19T00:28:58Z) - Efficient Prompting for LLM-based Generative Internet of Things [88.84327500311464]
Large language models (LLMs) have demonstrated remarkable capacities on various tasks, and integrating the capacities of LLMs into the Internet of Things (IoT) applications has drawn much research attention recently.
Due to security concerns, many institutions avoid accessing state-of-the-art commercial LLM services, requiring the deployment and utilization of open-source LLMs in a local network setting.
We propose a LLM-based Generative IoT (GIoT) system deployed in the local network setting in this study.
arXiv Detail & Related papers (2024-06-14T19:24:00Z) - Requirements are All You Need: From Requirements to Code with LLMs [0.0]
Large language models (LLMs) can be applied to software engineering tasks.
This paper introduces a tailored LLM for automating the generation of code snippets from well-structured requirements documents.
We demonstrate the LLM's proficiency in comprehending intricate user requirements and producing robust design and code solutions.
arXiv Detail & Related papers (2024-06-14T14:57:35Z) - Using LLMs in Software Requirements Specifications: An Empirical Evaluation [0.2812395851874055]
We assess the performance of GPT-4 and CodeLlama in drafting an Software Requirements Specification.
Our results suggest that LLMs can match the output quality of an entry-level software engineer to generate an SRS.
We conclude that the LLMs can be gainfully used by software engineers to increase productivity.
arXiv Detail & Related papers (2024-04-27T09:37:00Z) - When does In-context Learning Fall Short and Why? A Study on
Specification-Heavy Tasks [54.71034943526973]
In-context learning (ICL) has become the default method for using large language models (LLMs)
We find that ICL falls short of handling specification-heavy tasks, which are tasks with complicated and extensive task specifications.
We identify three primary reasons: inability to specifically understand context, misalignment in task schema comprehension with humans, and inadequate long-text understanding ability.
arXiv Detail & Related papers (2023-11-15T14:26:30Z) - Identifying Concerns When Specifying Machine Learning-Enabled Systems: A
Perspective-Based Approach [1.2184324428571227]
PerSpecML is a perspective-based approach for specifying ML-enabled systems.
It helps practitioners identify which attributes, including ML and non-ML components, are important to contribute to the overall system's quality.
arXiv Detail & Related papers (2023-09-14T18:31:16Z) - How Can Recommender Systems Benefit from Large Language Models: A Survey [82.06729592294322]
Large language models (LLM) have shown impressive general intelligence and human-like capabilities.
We conduct a comprehensive survey on this research direction from the perspective of the whole pipeline in real-world recommender systems.
arXiv Detail & Related papers (2023-06-09T11:31:50Z) - Augmented Large Language Models with Parametric Knowledge Guiding [72.71468058502228]
Large Language Models (LLMs) have significantly advanced natural language processing (NLP) with their impressive language understanding and generation capabilities.
Their performance may be suboptimal for domain-specific tasks that require specialized knowledge due to limited exposure to the related data.
We propose the novel Parametric Knowledge Guiding (PKG) framework, which equips LLMs with a knowledge-guiding module to access relevant knowledge.
arXiv Detail & Related papers (2023-05-08T15:05:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.