論文の概要: Feature Selection for Network Intrusion Detection
- arxiv url: http://arxiv.org/abs/2411.11603v1
- Date: Mon, 18 Nov 2024 14:25:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-19 14:33:44.026304
- Title: Feature Selection for Network Intrusion Detection
- Title(参考訳): ネットワーク侵入検出のための特徴選択
- Authors: Charles Westphal, Stephen Hailes, Mirco Musolesi,
- Abstract要約: 本稿では,ネットワーク侵入を検出する際に,非情報的特徴の排除を容易にする情報理論を提案する。
提案手法は,ニューラルネットワークを用いた関数近似に基づいて,再帰層を組み込んだアプローチのバージョンを実現する。
- 参考スコア(独自算出の注目度): 3.7414804164475983
- License:
- Abstract: Network Intrusion Detection (NID) remains a key area of research within the information security community, while also being relevant to Machine Learning (ML) practitioners. The latter generally aim to detect attacks using network features, which have been extracted from raw network data typically using dimensionality reduction methods, such as principal component analysis (PCA). However, PCA is not able to assess the relevance of features for the task at hand. Consequently, the features available are of varying quality, with some being entirely non-informative. From this, two major drawbacks arise. Firstly, trained and deployed models have to process large amounts of unnecessary data, therefore draining potentially costly resources. Secondly, the noise caused by the presence of irrelevant features can, in some cases, impede a model's ability to detect an attack. In order to deal with these challenges, we present Feature Selection for Network Intrusion Detection (FSNID) a novel information-theoretic method that facilitates the exclusion of non-informative features when detecting network intrusions. The proposed method is based on function approximation using a neural network, which enables a version of our approach that incorporates a recurrent layer. Consequently, this version uniquely enables the integration of temporal dependencies. Through an extensive set of experiments, we demonstrate that the proposed method selects a significantly reduced feature set, while maintaining NID performance. Code will be made available upon publication.
- Abstract(参考訳): NID(Network Intrusion Detection)は、情報セキュリティコミュニティにおいて重要な研究領域でありながら、機械学習(ML)実践者にも関係している。
後者は一般的に,主成分分析(PCA)などの次元削減手法を用いて生のネットワークデータから抽出したネットワーク特徴を用いて攻撃を検出することを目的としている。
しかし、PCAは、そのタスクにおける特徴の関連性を評価することができない。
その結果、利用可能な機能は様々な品質であり、一部は完全に非形式的である。
このことから、2つの大きな欠点が生じる。
まず、トレーニングされたモデルとデプロイされたモデルは、大量の不要なデータを処理しなければなりません。
第二に、無関係な特徴の存在によって引き起こされるノイズは、場合によっては、モデルが攻撃を検出する能力を妨げる可能性がある。
これらの課題に対処するために,ネットワーク侵入検出のための特徴選択(FSNID)を提案する。
提案手法は,ニューラルネットワークを用いた関数近似に基づいて,再帰層を組み込んだアプローチのバージョンを実現する。
結果として、このバージョンは時間依存の統合を一意に可能にします。
実験により,提案手法はNID性能を維持しつつ,機能セットの大幅な削減を図っている。
コードは出版時に公開されます。
関連論文リスト
- Detection-Rate-Emphasized Multi-objective Evolutionary Feature Selection for Network Intrusion Detection [21.104686670216445]
ネットワーク侵入検出における特徴選択問題を3目的最適化問題としてモデル化するDR-MOFSを提案する。
ほとんどの場合、提案手法は従来の手法、すなわちより少ない特徴、より高い精度と検出率を達成できる。
論文 参考訳(メタデータ) (2024-06-13T14:42:17Z) - Small Object Detection via Coarse-to-fine Proposal Generation and
Imitation Learning [52.06176253457522]
本稿では,粗粒度パイプラインと特徴模倣学習に基づく小型物体検出に適した2段階フレームワークを提案する。
CFINetは、大規模な小さなオブジェクト検出ベンチマークであるSODA-DとSODA-Aで最先端の性能を達成する。
論文 参考訳(メタデータ) (2023-08-18T13:13:09Z) - Learning to Detect Critical Nodes in Sparse Graphs via Feature Importance Awareness [53.351863569314794]
クリティカルノード問題(CNP)は、削除が残余ネットワークのペア接続性を最大に低下させるネットワークから臨界ノードの集合を見つけることを目的としている。
本研究は,ノード表現のための特徴重要度対応グラフアテンションネットワークを提案する。
ダブルディープQネットワークと組み合わせて、初めてCNPを解くエンドツーエンドのアルゴリズムを作成する。
論文 参考訳(メタデータ) (2021-12-03T14:23:05Z) - Fine-Grained Neural Network Explanation by Identifying Input Features
with Predictive Information [53.28701922632817]
入力領域における予測情報を用いて特徴を識別する手法を提案する。
我々の手法の中核となる考え方は、予測潜在機能に関連する入力機能のみを通過させる入力のボトルネックを活用することである。
論文 参考訳(メタデータ) (2021-10-04T14:13:42Z) - Supervised Feature Selection Techniques in Network Intrusion Detection:
a Critical Review [9.177695323629896]
機械学習技術は、ネットワーク侵入検出の貴重なサポートになりつつある。
データトラフィックを特徴付ける膨大な多様性と多数の機能に対処することは難しい問題です。
機能領域を縮小し、最も重要な機能のみを保持することで、FS(Feature Selection)はネットワーク管理において重要な前処理ステップとなる。
論文 参考訳(メタデータ) (2021-04-11T08:42:01Z) - And/or trade-off in artificial neurons: impact on adversarial robustness [91.3755431537592]
ネットワークに十分な数のOR様ニューロンが存在すると、分類の脆さと敵の攻撃に対する脆弱性が増加する。
そこで我々は,AND様ニューロンを定義し,ネットワーク内での割合を増大させる対策を提案する。
MNISTデータセットによる実験結果から,本手法はさらなる探索の方向として有望であることが示唆された。
論文 参考訳(メタデータ) (2021-02-15T08:19:05Z) - DNS Covert Channel Detection via Behavioral Analysis: a Machine Learning
Approach [0.09176056742068815]
本稿では,ネットワーク監視システムから受動的に抽出されたDNSネットワークデータの解析に基づいて,効果的な隠蔽チャネル検出手法を提案する。
提案手法は15日間の実験実験で評価され,最も関連する流出・トンネル攻撃をカバーするトラフィックを注入した。
論文 参考訳(メタデータ) (2020-10-04T13:28:28Z) - Experimental Review of Neural-based approaches for Network Intrusion
Management [8.727349339883094]
本稿では,侵入検出問題に適用したニューラルネットワーク手法の実験的検討を行う。
私たちは、ディープベースアプローチやウェイトレスニューラルネットワークを含む、侵入検出に関連する最も顕著なニューラルネットワークベースのテクニックの完全なビューを提供します。
我々の評価は、特に最先端のデータセットを使用してモデルのトレーニングを行う場合、ニューラルネットワークの価値を定量化する。
論文 参考訳(メタデータ) (2020-09-18T18:32:24Z) - A cognitive based Intrusion detection system [0.0]
侵入検知は、コンピュータネットワークのセキュリティを提供する重要なメカニズムの1つである。
本稿では,Deep Neural Network Ans Supportctor Machine Classifierに基づく新しい手法を提案する。
提案手法は, 侵入検知に類似した手法により, より精度良く攻撃を予測できる。
論文 参考訳(メタデータ) (2020-05-19T13:30:30Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
スパイキングニューラルネットワーク(SNN)は、時間的スパイクパターンを用いて情報を表現し、伝達する。
本稿では,情報符号化,シナプス可塑性,意思決定におけるスパイクタイミングダイナミクスの寄与について検討し,将来のDeepSNNやニューロモルフィックハードウェアシステムの設計への新たな視点を提供する。
論文 参考訳(メタデータ) (2020-03-26T11:13:07Z) - Forgetting Outside the Box: Scrubbing Deep Networks of Information
Accessible from Input-Output Observations [143.3053365553897]
本稿では、訓練された深層ネットワークからトレーニングデータのコホートへの依存を取り除く手順について述べる。
忘れられたコホートについて,クエリ毎にどれだけの情報を取り出すことができるか,という新たな境界を導入する。
我々は,ニューラルタンジェントカーネルにインスパイアされたDNNのアクティベーションとウェイトダイナミクスの接続を利用して,アクティベーションの情報を計算する。
論文 参考訳(メタデータ) (2020-03-05T23:17:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。