Improving Data Curation of Software Vulnerability Patches through Uncertainty Quantification
- URL: http://arxiv.org/abs/2411.11659v1
- Date: Mon, 18 Nov 2024 15:37:28 GMT
- Title: Improving Data Curation of Software Vulnerability Patches through Uncertainty Quantification
- Authors: Hui Chen, Yunhua Zhao, Kostadin Damevski,
- Abstract summary: We propose an approach employing Uncertainty Quantification (UQ) to curate datasets of publicly-available software vulnerability patches.
Model Ensemble and heteroscedastic models are the best choices for vulnerability patch datasets.
- Score: 6.916509590637601
- License:
- Abstract: The changesets (or patches) that fix open source software vulnerabilities form critical datasets for various machine learning security-enhancing applications, such as automated vulnerability patching and silent fix detection. These patch datasets are derived from extensive collections of historical vulnerability fixes, maintained in databases like the Common Vulnerabilities and Exposures list and the National Vulnerability Database. However, since these databases focus on rapid notification to the security community, they contain significant inaccuracies and omissions that have a negative impact on downstream software security quality assurance tasks. In this paper, we propose an approach employing Uncertainty Quantification (UQ) to curate datasets of publicly-available software vulnerability patches. Our methodology leverages machine learning models that incorporate UQ to differentiate between patches based on their potential utility. We begin by evaluating a number of popular UQ techniques, including Vanilla, Monte Carlo Dropout, and Model Ensemble, as well as homoscedastic and heteroscedastic models of noise. Our findings indicate that Model Ensemble and heteroscedastic models are the best choices for vulnerability patch datasets. Based on these UQ modeling choices, we propose a heuristic that uses UQ to filter out lower quality instances and select instances with high utility value from the vulnerability dataset. Using our approach, we observe an improvement in predictive performance and significant reduction of model training time (i.e., energy consumption) for a state-of-the-art vulnerability prediction model.
Related papers
- A Combined Feature Embedding Tools for Multi-Class Software Defect and Identification [2.2020053359163305]
We present CodeGraphNet, an experimental method that combines GraphCodeBERT and Graph Convolutional Network approaches.
This method captures intricate relation- ships between features, providing for more exact identification and separation of vulnerabilities.
The DeepTree model, which is a hybrid of a Decision Tree and a Neural Network, outperforms state-of-the-art approaches.
arXiv Detail & Related papers (2024-11-26T17:33:02Z) - CRepair: CVAE-based Automatic Vulnerability Repair Technology [1.147605955490786]
Software vulnerabilities pose significant threats to the integrity, security, and reliability of modern software and its application data.
To address the challenges of vulnerability repair, researchers have proposed various solutions, with learning-based automatic vulnerability repair techniques gaining widespread attention.
This paper proposes CRepair, a CVAE-based automatic vulnerability repair technology aimed at fixing security vulnerabilities in system code.
arXiv Detail & Related papers (2024-11-08T12:55:04Z) - DFEPT: Data Flow Embedding for Enhancing Pre-Trained Model Based Vulnerability Detection [7.802093464108404]
We propose a data flow embedding technique to enhance the performance of pre-trained models in vulnerability detection tasks.
Specifically, we parse data flow graphs from function-level source code, and use the data type of the variable as the node characteristics of the DFG.
Our research shows that DFEPT can provide effective vulnerability semantic information to pre-trained models, achieving an accuracy of 64.97% on the Devign dataset and an F1-Score of 47.9% on the Reveal dataset.
arXiv Detail & Related papers (2024-10-24T07:05:07Z) - Privacy Backdoors: Enhancing Membership Inference through Poisoning Pre-trained Models [112.48136829374741]
In this paper, we unveil a new vulnerability: the privacy backdoor attack.
When a victim fine-tunes a backdoored model, their training data will be leaked at a significantly higher rate than if they had fine-tuned a typical model.
Our findings highlight a critical privacy concern within the machine learning community and call for a reevaluation of safety protocols in the use of open-source pre-trained models.
arXiv Detail & Related papers (2024-04-01T16:50:54Z) - REEF: A Framework for Collecting Real-World Vulnerabilities and Fixes [40.401211102969356]
We propose an automated collecting framework REEF to collect REal-world vulnErabilities and Fixes from open-source repositories.
We develop a multi-language crawler to collect vulnerabilities and their fixes, and design metrics to filter for high-quality vulnerability-fix pairs.
Through extensive experiments, we demonstrate that our approach can collect high-quality vulnerability-fix pairs and generate strong explanations.
arXiv Detail & Related papers (2023-09-15T02:50:08Z) - CodeLMSec Benchmark: Systematically Evaluating and Finding Security
Vulnerabilities in Black-Box Code Language Models [58.27254444280376]
Large language models (LLMs) for automatic code generation have achieved breakthroughs in several programming tasks.
Training data for these models is usually collected from the Internet (e.g., from open-source repositories) and is likely to contain faults and security vulnerabilities.
This unsanitized training data can cause the language models to learn these vulnerabilities and propagate them during the code generation procedure.
arXiv Detail & Related papers (2023-02-08T11:54:07Z) - Certified Adversarial Defenses Meet Out-of-Distribution Corruptions:
Benchmarking Robustness and Simple Baselines [65.0803400763215]
This work critically examines how adversarial robustness guarantees change when state-of-the-art certifiably robust models encounter out-of-distribution data.
We propose a novel data augmentation scheme, FourierMix, that produces augmentations to improve the spectral coverage of the training data.
We find that FourierMix augmentations help eliminate the spectral bias of certifiably robust models enabling them to achieve significantly better robustness guarantees on a range of OOD benchmarks.
arXiv Detail & Related papers (2021-12-01T17:11:22Z) - Robust and Transferable Anomaly Detection in Log Data using Pre-Trained
Language Models [59.04636530383049]
Anomalies or failures in large computer systems, such as the cloud, have an impact on a large number of users.
We propose a framework for anomaly detection in log data, as a major troubleshooting source of system information.
arXiv Detail & Related papers (2021-02-23T09:17:05Z) - V2W-BERT: A Framework for Effective Hierarchical Multiclass
Classification of Software Vulnerabilities [7.906207218788341]
We present a novel Transformer-based learning framework (V2W-BERT) in this paper.
By using ideas from natural language processing, link prediction and transfer learning, our method outperforms previous approaches.
We achieve up to 97% prediction accuracy for randomly partitioned data and up to 94% prediction accuracy in temporally partitioned data.
arXiv Detail & Related papers (2021-02-23T05:16:57Z) - RobustBench: a standardized adversarial robustness benchmark [84.50044645539305]
Key challenge in benchmarking robustness is that its evaluation is often error-prone leading to robustness overestimation.
We evaluate adversarial robustness with AutoAttack, an ensemble of white- and black-box attacks.
We analyze the impact of robustness on the performance on distribution shifts, calibration, out-of-distribution detection, fairness, privacy leakage, smoothness, and transferability.
arXiv Detail & Related papers (2020-10-19T17:06:18Z) - An Empirical Analysis of Backward Compatibility in Machine Learning
Systems [47.04803977692586]
We consider how updates, intended to improve ML models, can introduce new errors that can significantly affect downstream systems and users.
For example, updates in models used in cloud-based classification services, such as image recognition, can cause unexpected erroneous behavior.
arXiv Detail & Related papers (2020-08-11T08:10:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.