A Combined Feature Embedding Tools for Multi-Class Software Defect and Identification
- URL: http://arxiv.org/abs/2411.17621v1
- Date: Tue, 26 Nov 2024 17:33:02 GMT
- Title: A Combined Feature Embedding Tools for Multi-Class Software Defect and Identification
- Authors: Md. Fahim Sultan, Tasmin Karim, Md. Shazzad Hossain Shaon, Mohammad Wardat, Mst. Shapna Akter,
- Abstract summary: We present CodeGraphNet, an experimental method that combines GraphCodeBERT and Graph Convolutional Network approaches.
This method captures intricate relation- ships between features, providing for more exact identification and separation of vulnerabilities.
The DeepTree model, which is a hybrid of a Decision Tree and a Neural Network, outperforms state-of-the-art approaches.
- Score: 2.2020053359163305
- License:
- Abstract: In software, a vulnerability is a defect in a program that attackers might utilize to acquire unauthorized access, alter system functions, and acquire information. These vulnerabilities arise from programming faults, design flaws, incorrect setups, and a lack of security protective measures. To mitigate these vulnerabilities, regular software upgrades, code reviews, safe development techniques, and the use of security tools to find and fix problems have been important. Several ways have been delivered in recent studies to address difficulties related to software vulnerabilities. However, previous approaches have significant limitations, notably in feature embedding and precisely recognizing specific vulnerabilities. To overcome these drawbacks, we present CodeGraphNet, an experimental method that combines GraphCodeBERT and Graph Convolutional Network (GCN) approaches, where, CodeGraphNet reveals data in a high-dimensional vector space, with comparable or related properties grouped closer together. This method captures intricate relation- ships between features, providing for more exact identification and separation of vulnerabilities. Using this feature embedding approach, we employed four machine learning models, applying both independent testing and 10-fold cross-validation. The DeepTree model, which is a hybrid of a Decision Tree and a Neural Network, outperforms state-of-the-art approaches. In additional validation, we evaluated our model using feature embeddings from LSA, GloVe, FastText, CodeBERT and GraphCodeBERT, and found that the CodeGraphNet method presented improved vulnerability identification with 98% of accuracy. Our model was tested on a real-time dataset to determine its capacity to handle real-world data and to focus on defect localization, which might influence future studies.
Related papers
- DFEPT: Data Flow Embedding for Enhancing Pre-Trained Model Based Vulnerability Detection [7.802093464108404]
We propose a data flow embedding technique to enhance the performance of pre-trained models in vulnerability detection tasks.
Specifically, we parse data flow graphs from function-level source code, and use the data type of the variable as the node characteristics of the DFG.
Our research shows that DFEPT can provide effective vulnerability semantic information to pre-trained models, achieving an accuracy of 64.97% on the Devign dataset and an F1-Score of 47.9% on the Reveal dataset.
arXiv Detail & Related papers (2024-10-24T07:05:07Z) - Divide and Conquer based Symbolic Vulnerability Detection [0.16385815610837165]
This paper presents a vulnerability detection approach based on symbolic execution and control flow graph analysis.
Our approach employs a divide-and-conquer algorithm to eliminate irrelevant program information.
arXiv Detail & Related papers (2024-09-20T13:09:07Z) - Enhancing Code Vulnerability Detection via Vulnerability-Preserving Data Augmentation [29.72520866016839]
Source code vulnerability detection aims to identify inherent vulnerabilities to safeguard software systems from potential attacks.
Many prior studies overlook diverse vulnerability characteristics, simplifying the problem into a binary (0-1) classification task.
FGVulDet employs multiple classifiers to discern characteristics of various vulnerability types and combines their outputs to identify the specific type of vulnerability.
FGVulDet is trained on a large-scale dataset from GitHub, encompassing five different types of vulnerabilities.
arXiv Detail & Related papers (2024-04-15T09:10:52Z) - Profile of Vulnerability Remediations in Dependencies Using Graph
Analysis [40.35284812745255]
This research introduces graph analysis methods and a modified Graph Attention Convolutional Neural Network (GAT) model.
We analyze control flow graphs to profile breaking changes in applications occurring from dependency upgrades intended to remediate vulnerabilities.
Results demonstrate the effectiveness of the enhanced GAT model in offering nuanced insights into the relational dynamics of code vulnerabilities.
arXiv Detail & Related papers (2024-03-08T02:01:47Z) - GraphCloak: Safeguarding Task-specific Knowledge within Graph-structured Data from Unauthorized Exploitation [61.80017550099027]
Graph Neural Networks (GNNs) are increasingly prevalent in a variety of fields.
Growing concerns have emerged regarding the unauthorized utilization of personal data.
Recent studies have shown that imperceptible poisoning attacks are an effective method of protecting image data from such misuse.
This paper introduces GraphCloak to safeguard against the unauthorized usage of graph data.
arXiv Detail & Related papers (2023-10-11T00:50:55Z) - An Unbiased Transformer Source Code Learning with Semantic Vulnerability
Graph [3.3598755777055374]
Current vulnerability screening techniques are ineffective at identifying novel vulnerabilities or providing developers with code vulnerability and classification.
To address these issues, we propose a joint multitasked unbiased vulnerability classifier comprising a transformer "RoBERTa" and graph convolution neural network (GCN)
We present a training process utilizing a semantic vulnerability graph (SVG) representation from source code, created by integrating edges from a sequential flow, control flow, and data flow, as well as a novel flow dubbed Poacher Flow (PF)
arXiv Detail & Related papers (2023-04-17T20:54:14Z) - Enhancing Multiple Reliability Measures via Nuisance-extended
Information Bottleneck [77.37409441129995]
In practical scenarios where training data is limited, many predictive signals in the data can be rather from some biases in data acquisition.
We consider an adversarial threat model under a mutual information constraint to cover a wider class of perturbations in training.
We propose an autoencoder-based training to implement the objective, as well as practical encoder designs to facilitate the proposed hybrid discriminative-generative training.
arXiv Detail & Related papers (2023-03-24T16:03:21Z) - Improving robustness of jet tagging algorithms with adversarial training [56.79800815519762]
We investigate the vulnerability of flavor tagging algorithms via application of adversarial attacks.
We present an adversarial training strategy that mitigates the impact of such simulated attacks.
arXiv Detail & Related papers (2022-03-25T19:57:19Z) - VELVET: a noVel Ensemble Learning approach to automatically locate
VulnErable sTatements [62.93814803258067]
This paper presents VELVET, a novel ensemble learning approach to locate vulnerable statements in source code.
Our model combines graph-based and sequence-based neural networks to successfully capture the local and global context of a program graph.
VELVET achieves 99.6% and 43.6% top-1 accuracy over synthetic data and real-world data, respectively.
arXiv Detail & Related papers (2021-12-20T22:45:27Z) - Software Vulnerability Detection via Deep Learning over Disaggregated
Code Graph Representation [57.92972327649165]
This work explores a deep learning approach to automatically learn the insecure patterns from code corpora.
Because code naturally admits graph structures with parsing, we develop a novel graph neural network (GNN) to exploit both the semantic context and structural regularity of a program.
arXiv Detail & Related papers (2021-09-07T21:24:36Z) - Information Obfuscation of Graph Neural Networks [96.8421624921384]
We study the problem of protecting sensitive attributes by information obfuscation when learning with graph structured data.
We propose a framework to locally filter out pre-determined sensitive attributes via adversarial training with the total variation and the Wasserstein distance.
arXiv Detail & Related papers (2020-09-28T17:55:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.