Artificial Scientific Discovery
- URL: http://arxiv.org/abs/2411.11672v1
- Date: Mon, 18 Nov 2024 15:51:45 GMT
- Title: Artificial Scientific Discovery
- Authors: Antonio Norelli,
- Abstract summary: This thesis spans from AlphaGo to ChatGPT to examine the concepts needed to realize the vision of an artificial scientist.
An artificial scientist must develop its own interpretation of the language used to explain its findings.
This perspective leads us to see modern multimodal models as interpreters, and to devise a new way to build interpretable and cost-effective CLIP-like models.
- Score: 5.241773225218436
- License:
- Abstract: Rooted in the explosion of deep learning over the past decade, this thesis spans from AlphaGo to ChatGPT to empirically examine the fundamental concepts needed to realize the vision of an artificial scientist: a machine with the capacity to autonomously generate original research and contribute to the expansion of human knowledge. The investigation begins with {\sc Olivaw}, an AlphaGo Zero-like agent that discovers Othello knowledge from scratch but is unable to communicate it. This realization leads to the development of the Explanatory Learning (EL) framework, a formalization of the problem faced by a scientist when trying to explain a new phenomenon to their peers. The effective EL prescriptions allow us to crack Zendo, a board game simulating the scientific endeavor. This success comes with a fundamental insight: an artificial scientist must develop its own interpretation of the language used to explain its findings. This perspective then leads us to see modern multimodal models as interpreters, and to devise a new way to build interpretable and cost-effective CLIP-like models: by coupling two unimodal models using little multimodal data and no further training. Finally, we discuss what ChatGPT and its siblings are still missing to become artificial scientists, and introduce Odeen, a benchmark about interpreting explanations that sees LLMs going no further than random chance while being instead fully solved by humans.
Related papers
- Improving Scientific Hypothesis Generation with Knowledge Grounded Large Language Models [20.648157071328807]
Large language models (LLMs) can identify novel research directions by analyzing existing knowledge.
LLMs are prone to generating hallucinations'', outputs that are plausible-sounding but factually incorrect.
We propose KG-CoI, a system that enhances LLM hypothesis generation by integrating external, structured knowledge from knowledge graphs.
arXiv Detail & Related papers (2024-11-04T18:50:00Z) - The AI Scientist: Towards Fully Automated Open-Ended Scientific Discovery [14.465756130099091]
This paper presents the first comprehensive framework for fully automatic scientific discovery.
We introduce The AI Scientist, which generates novel research ideas, writes code, executes experiments, visualizes results, and describes its findings.
In principle, this process can be repeated to iteratively develop ideas in an open-ended fashion, acting like the human scientific community.
arXiv Detail & Related papers (2024-08-12T16:58:11Z) - LLM and Simulation as Bilevel Optimizers: A New Paradigm to Advance Physical Scientific Discovery [141.39722070734737]
We propose to enhance the knowledge-driven, abstract reasoning abilities of Large Language Models with the computational strength of simulations.
We introduce Scientific Generative Agent (SGA), a bilevel optimization framework.
We conduct experiments to demonstrate our framework's efficacy in law discovery and molecular design.
arXiv Detail & Related papers (2024-05-16T03:04:10Z) - Large language models surpass human experts in predicting neuroscience results [60.26891446026707]
Large language models (LLMs) forecast novel results better than human experts.
BrainBench is a benchmark for predicting neuroscience results.
Our approach is not neuroscience-specific and is transferable to other knowledge-intensive endeavors.
arXiv Detail & Related papers (2024-03-04T15:27:59Z) - SciInstruct: a Self-Reflective Instruction Annotated Dataset for Training Scientific Language Models [57.96527452844273]
We introduce SciInstruct, a suite of scientific instructions for training scientific language models capable of college-level scientific reasoning.
We curated a diverse and high-quality dataset encompassing physics, chemistry, math, and formal proofs.
To verify the effectiveness of SciInstruct, we fine-tuned different language models with SciInstruct, i.e., ChatGLM3 (6B and 32B), Llama3-8B-Instruct, and Mistral-7B: MetaMath.
arXiv Detail & Related papers (2024-01-15T20:22:21Z) - Large Language Models for Scientific Synthesis, Inference and
Explanation [56.41963802804953]
We show how large language models can perform scientific synthesis, inference, and explanation.
We show that the large language model can augment this "knowledge" by synthesizing from the scientific literature.
This approach has the further advantage that the large language model can explain the machine learning system's predictions.
arXiv Detail & Related papers (2023-10-12T02:17:59Z) - DARWIN Series: Domain Specific Large Language Models for Natural Science [20.864698325126735]
We present DARWIN, a series of tailored LLMs for natural science, mainly in physics, chemistry, and material science.
We fine-tuned the models using over 60,000 instruction data points, emphasizing factual correctness.
DARWIN series not only achieves state-of-the-art results on various scientific tasks but also diminishes reliance on closed-source AI models.
arXiv Detail & Related papers (2023-08-25T01:40:48Z) - Probing Across Time: What Does RoBERTa Know and When? [70.20775905353794]
We show that linguistic knowledge is acquired fast, stably, and robustly across domains. Facts and commonsense are slower and more domain-sensitive.
We believe that probing-across-time analyses can help researchers understand the complex, intermingled learning that these models undergo and guide us toward more efficient approaches that accomplish necessary learning faster.
arXiv Detail & Related papers (2021-04-16T04:26:39Z) - Explainability in Deep Reinforcement Learning [68.8204255655161]
We review recent works in the direction to attain Explainable Reinforcement Learning (XRL)
In critical situations where it is essential to justify and explain the agent's behaviour, better explainability and interpretability of RL models could help gain scientific insight on the inner workings of what is still considered a black box.
arXiv Detail & Related papers (2020-08-15T10:11:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.