A Potential Game Perspective in Federated Learning
- URL: http://arxiv.org/abs/2411.11793v1
- Date: Mon, 18 Nov 2024 18:06:44 GMT
- Title: A Potential Game Perspective in Federated Learning
- Authors: Kang Liu, Ziqi Wang, Enrique Zuazua,
- Abstract summary: Federated learning (FL) is an emerging paradigm for training machine learning models across distributed clients.
We propose a potential game framework where each client's payoff is determined by their individual efforts and the rewards provided by the server.
- Score: 7.066313314590149
- License:
- Abstract: Federated learning (FL) is an emerging paradigm for training machine learning models across distributed clients. Traditionally, in FL settings, a central server assigns training efforts (or strategies) to clients. However, from a market-oriented perspective, clients may independently choose their training efforts based on rational self-interest. To explore this, we propose a potential game framework where each client's payoff is determined by their individual efforts and the rewards provided by the server. The rewards are influenced by the collective efforts of all clients and can be modulated through a reward factor. Our study begins by establishing the existence of Nash equilibria (NEs), followed by an investigation of uniqueness in homogeneous settings. We demonstrate a significant improvement in clients' training efforts at a critical reward factor, identifying it as the optimal choice for the server. Furthermore, we prove the convergence of the best-response algorithm to compute NEs for our FL game. Finally, we apply the training efforts derived from specific NEs to a real-world FL scenario, validating the effectiveness of the identified optimal reward factor.
Related papers
- Federated Learning Can Find Friends That Are Advantageous [14.993730469216546]
In Federated Learning (FL), the distributed nature and heterogeneity of client data present both opportunities and challenges.
We introduce a novel algorithm that assigns adaptive aggregation weights to clients participating in FL training, identifying those with data distributions most conducive to a specific learning objective.
arXiv Detail & Related papers (2024-02-07T17:46:37Z) - Incentive Mechanism Design for Unbiased Federated Learning with
Randomized Client Participation [31.2017942327673]
This paper proposes a game theoretic incentive mechanism for federated learning (FL) with randomized client participation.
We show that our mechanism achieves higher model performance for the server as well as higher profits for the clients.
arXiv Detail & Related papers (2023-04-17T04:05:57Z) - Welfare and Fairness Dynamics in Federated Learning: A Client Selection
Perspective [1.749935196721634]
Federated learning (FL) is a privacy-preserving learning technique that enables distributed computing devices to train shared learning models.
The economic considerations of the clients, such as fairness and incentive, are yet to be fully explored.
We propose a novel incentive mechanism that involves a client selection process to remove low-quality clients and a money transfer process to ensure a fair reward distribution.
arXiv Detail & Related papers (2023-02-17T16:31:19Z) - Federated Learning as a Network Effects Game [32.264180198812745]
Federated Learning (FL) aims to foster collaboration among a population of clients to improve the accuracy of machine learning without directly sharing local data.
In practice, clients may not benefit from joining in FL, especially in light of potential costs related to issues such as privacy and computation.
We are the first to model clients' behaviors in FL as a network effects game, where each client's benefit depends on other clients who also join the network.
arXiv Detail & Related papers (2023-02-16T19:10:12Z) - FilFL: Client Filtering for Optimized Client Participation in Federated Learning [71.46173076298957]
Federated learning enables clients to collaboratively train a model without exchanging local data.
Clients participating in the training process significantly impact the convergence rate, learning efficiency, and model generalization.
We propose a novel approach, client filtering, to improve model generalization and optimize client participation and training.
arXiv Detail & Related papers (2023-02-13T18:55:31Z) - Client Selection in Federated Learning: Principles, Challenges, and
Opportunities [15.33636272844544]
Federated Learning (FL) is a privacy-preserving paradigm for training Machine Learning (ML) models.
In a typical FL scenario, clients exhibit significant heterogeneity in terms of data distribution and hardware configurations.
Various client selection algorithms have been developed, showing promising performance improvement.
arXiv Detail & Related papers (2022-11-03T01:51:14Z) - FL Games: A Federated Learning Framework for Distribution Shifts [71.98708418753786]
Federated learning aims to train predictive models for data that is distributed across clients, under the orchestration of a server.
We propose FL GAMES, a game-theoretic framework for federated learning that learns causal features that are invariant across clients.
arXiv Detail & Related papers (2022-10-31T22:59:03Z) - Fed-CBS: A Heterogeneity-Aware Client Sampling Mechanism for Federated
Learning via Class-Imbalance Reduction [76.26710990597498]
We show that the class-imbalance of the grouped data from randomly selected clients can lead to significant performance degradation.
Based on our key observation, we design an efficient client sampling mechanism, i.e., Federated Class-balanced Sampling (Fed-CBS)
In particular, we propose a measure of class-imbalance and then employ homomorphic encryption to derive this measure in a privacy-preserving way.
arXiv Detail & Related papers (2022-09-30T05:42:56Z) - FL Games: A federated learning framework for distribution shifts [71.98708418753786]
Federated learning aims to train predictive models for data that is distributed across clients, under the orchestration of a server.
We propose FL Games, a game-theoretic framework for federated learning for learning causal features that are invariant across clients.
arXiv Detail & Related papers (2022-05-23T07:51:45Z) - A Contract Theory based Incentive Mechanism for Federated Learning [52.24418084256517]
Federated learning (FL) serves as a data privacy-preserved machine learning paradigm, and realizes the collaborative model trained by distributed clients.
To accomplish an FL task, the task publisher needs to pay financial incentives to the FL server and FL server offloads the task to the contributing FL clients.
It is challenging to design proper incentives for the FL clients due to the fact that the task is privately trained by the clients.
arXiv Detail & Related papers (2021-08-12T07:30:42Z) - Blockchain Assisted Decentralized Federated Learning (BLADE-FL):
Performance Analysis and Resource Allocation [119.19061102064497]
We propose a decentralized FL framework by integrating blockchain into FL, namely, blockchain assisted decentralized federated learning (BLADE-FL)
In a round of the proposed BLADE-FL, each client broadcasts its trained model to other clients, competes to generate a block based on the received models, and then aggregates the models from the generated block before its local training of the next round.
We explore the impact of lazy clients on the learning performance of BLADE-FL, and characterize the relationship among the optimal K, the learning parameters, and the proportion of lazy clients.
arXiv Detail & Related papers (2021-01-18T07:19:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.