論文の概要: COST CA20120 INTERACT Framework of Artificial Intelligence Based Channel Modeling
- arxiv url: http://arxiv.org/abs/2411.11798v1
- Date: Thu, 31 Oct 2024 13:16:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-24 06:02:02.640761
- Title: COST CA20120 INTERACT Framework of Artificial Intelligence Based Channel Modeling
- Title(参考訳): COST CA20120 Interact Framework of Artificial Intelligence Based Channel Modeling
- Authors: Ruisi He, Nicola D. Cicco, Bo Ai, Mi Yang, Yang Miao, Mate Boban,
- Abstract要約: チャネルモデリングにおける人工知能(AI)の実現可能性と実装について検討する。
まず,複雑な無線チャネルを特徴付けるための,AIに基づくチャネルモデリングの枠組みを提案する。
そして、いくつかの大きな課題を詳述し、可能な解決策を提示します。
- 参考スコア(独自算出の注目度): 19.8607582366604
- License:
- Abstract: Accurate channel models are the prerequisite for communication-theoretic investigations as well as system design. Channel modeling generally relies on statistical and deterministic approaches. However, there are still significant limits for the traditional modeling methods in terms of accuracy, generalization ability, and computational complexity. The fundamental reason is that establishing a quantified and accurate mapping between physical environment and channel characteristics becomes increasing challenging for modern communication systems. Here, in the context of COST CA20120 Action, we evaluate and discuss the feasibility and implementation of using artificial intelligence (AI) for channel modeling, and explore where the future of this field lies. Firstly, we present a framework of AI-based channel modeling to characterize complex wireless channels. Then, we highlight in detail some major challenges and present the possible solutions: i) estimating the uncertainty of AI-based channel predictions, ii) integrating prior knowledge of propagation to improve generalization capabilities, and iii) interpretable AI for channel modeling. We present and discuss illustrative numerical results to showcase the capabilities of AI-based channel modeling.
- Abstract(参考訳): 正確なチャネルモデルは、通信理論的な調査とシステム設計の前提条件である。
チャネルモデリングは一般に統計的および決定論的アプローチに依存している。
しかし、精度、一般化能力、計算複雑性の点で、従来のモデリング手法には依然として大きな限界がある。
基本的な理由は、物理環境とチャネル特性の定量化と正確なマッピングが、現代の通信システムではますます困難になっているためである。
ここでは、COST CA20120 Actionの文脈において、チャネルモデリングに人工知能(AI)を用いることの有効性と実装について検討し、この分野の将来について検討する。
まず,複雑な無線チャネルを特徴付けるための,AIに基づくチャネルモデリングの枠組みを提案する。
そして、いくつかの大きな課題を詳述し、可能な解決策を提示します。
i)AIに基づくチャネル予測の不確実性を推定すること。
二 一般化能力を向上させるために伝播の事前知識を統合すること。
三 チャネルモデリングのための解釈可能なAI。
本稿では,AIに基づくチャネルモデリングの能力を示すために,実測的な数値結果について論じる。
関連論文リスト
- Generative Artificial Intelligence Meets Synthetic Aperture Radar: A Survey [49.29751866761522]
本稿では,GenAIとSARの交差点について検討する。
まず、SAR分野における一般的なデータ生成ベースのアプリケーションについて説明する。
次に、最新のGenAIモデルの概要を体系的にレビューする。
最後に、SARドメインの対応するアプリケーションも含まれる。
論文 参考訳(メタデータ) (2024-11-05T03:06:00Z) - AI-Aided Kalman Filters [65.35350122917914]
カルマンフィルタ(KF)とその変種は、信号処理において最も著名なアルゴリズムの一つである。
最近の進歩は、古典的なカルマン型フィルタリングでディープニューラルネットワーク(DNN)を融合させる可能性を示している。
本稿では,KF型アルゴリズムにAIを組み込むための設計アプローチについて,チュートリアル形式で概説する。
論文 参考訳(メタデータ) (2024-10-16T06:47:53Z) - Explainable AI for Enhancing Efficiency of DL-based Channel Estimation [1.0136215038345013]
人工知能に基づく意思決定のサポートは、将来の6Gネットワークの重要な要素である。
このようなアプリケーションでは、ブラックボックスモデルとしてAIを使用するのは危険で難しい。
本稿では,無線通信におけるチャネル推定を目的とした新しいXAI-CHESTフレームワークを提案する。
論文 参考訳(メタデータ) (2024-07-09T16:24:21Z) - Physics-informed Generalizable Wireless Channel Modeling with
Segmentation and Deep Learning: Fundamentals, Methodologies, and Challenges [26.133092114053472]
チャネルモデリングにおけるPINNに基づくアプローチは、一般化可能性、解釈可能性、堅牢性などの有望な特性を示す。
セマンティックセグメンテーションとディープラーニングを用いた屋内チャネルの正確な予測に関する最近の研究事例について述べる。
論文 参考訳(メタデータ) (2024-01-02T16:56:13Z) - Generative AI for Physical Layer Communications: A Survey [76.61956357178295]
生成人工知能(GAI)は、デジタルコンテンツ生産の効率を高める可能性がある。
複雑なデータ分散を分析するGAIの能力は、無線通信にとって大きな可能性を秘めている。
本稿では、信号分類、チャネル推定、等化といった従来の問題から、インテリジェントな反射面やジョイントソースチャネル符号化といった新たなトピックまで、GAIの物理層での通信への応用に関する包括的な調査を行う。
論文 参考訳(メタデータ) (2023-12-09T15:20:56Z) - Towards Explainable AI for Channel Estimation in Wireless Communications [1.0874597293913013]
XAI-CHEST方式の目的は,無関係なモデルに対して高雑音を発生させることで,関連するモデル入力を同定することである。
その結果, 検討したDL型チャネル推定器の挙動をさらに解析し, 評価できることがわかった。
論文 参考訳(メタデータ) (2023-07-03T11:51:00Z) - On the benefits of robust models in modulation recognition [53.391095789289736]
畳み込み層を用いたディープニューラルネットワーク(DNN)は、通信における多くのタスクにおいて最先端である。
画像分類のような他の領域では、DNNは敵の摂動に弱いことが示されている。
最新モデルの堅牢性をテストするための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2021-03-27T19:58:06Z) - Knowledge-Guided Dynamic Systems Modeling: A Case Study on Modeling
River Water Quality [8.110949636804774]
実世界の現象をモデル化することは、エコロジーモデリングや財務予測など、多くの科学と工学の取り組みの焦点である。
複雑な動的システムのための正確なモデルの構築は、基盤となるプロセスの理解を改善し、リソース効率に繋がる。
反対の極端に、データ駆動モデリングはデータから直接モデルを学び、広範囲なデータと潜在的に過剰なフィッティングを生成する。
中間的アプローチであるモデルリビジョンに注目し,事前知識とデータを組み合わせることで,両世界のベストを達成する。
論文 参考訳(メタデータ) (2021-03-01T06:31:38Z) - Model-Based Deep Learning [155.063817656602]
信号処理、通信、制御は伝統的に古典的な統計モデリング技術に依存している。
ディープニューラルネットワーク(DNN)は、データから操作を学ぶ汎用アーキテクチャを使用し、優れたパフォーマンスを示す。
私たちは、原理数学モデルとデータ駆動システムを組み合わせて両方のアプローチの利点を享受するハイブリッド技術に興味があります。
論文 参考訳(メタデータ) (2020-12-15T16:29:49Z) - Data-Driven Symbol Detection via Model-Based Machine Learning [117.58188185409904]
機械学習(ML)とモデルベースアルゴリズムを組み合わせた,検出設計のシンボル化を目的とした,データ駆動型フレームワークについてレビューする。
このハイブリッドアプローチでは、よく知られたチャネルモデルに基づくアルゴリズムをMLベースのアルゴリズムで拡張し、チャネルモデル依存性を除去する。
提案手法は, 正確なチャネル入出力統計関係を知らなくても, モデルベースアルゴリズムのほぼ最適性能が得られることを示す。
論文 参考訳(メタデータ) (2020-02-14T06:58:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。