Equivariant spatio-hemispherical networks for diffusion MRI deconvolution
- URL: http://arxiv.org/abs/2411.11819v1
- Date: Mon, 18 Nov 2024 18:37:39 GMT
- Title: Equivariant spatio-hemispherical networks for diffusion MRI deconvolution
- Authors: Axel Elaldi, Guido Gerig, Neel Dey,
- Abstract summary: This paper advances the analysis of such sphericalal data by developing convolutional network layers that are equivariant to the $math(3) times SO(3)$ group.
In the context of sparse spherical fiber deconvolution to recover white matter, our proposed equivariant network layers yield substantial performance and efficiency gains.
- Score: 5.680416078423551
- License:
- Abstract: Each voxel in a diffusion MRI (dMRI) image contains a spherical signal corresponding to the direction and strength of water diffusion in the brain. This paper advances the analysis of such spatio-spherical data by developing convolutional network layers that are equivariant to the $\mathbf{E(3) \times SO(3)}$ group and account for the physical symmetries of dMRI including rotations, translations, and reflections of space alongside voxel-wise rotations. Further, neuronal fibers are typically antipodally symmetric, a fact we leverage to construct highly efficient spatio-hemispherical graph convolutions to accelerate the analysis of high-dimensional dMRI data. In the context of sparse spherical fiber deconvolution to recover white matter microstructure, our proposed equivariant network layers yield substantial performance and efficiency gains, leading to better and more practical resolution of crossing neuronal fibers and fiber tractography. These gains are experimentally consistent across both simulation and in vivo human datasets.
Related papers
- Enhancing lattice kinetic schemes for fluid dynamics with Lattice-Equivariant Neural Networks [79.16635054977068]
We present a new class of equivariant neural networks, dubbed Lattice-Equivariant Neural Networks (LENNs)
Our approach develops within a recently introduced framework aimed at learning neural network-based surrogate models Lattice Boltzmann collision operators.
Our work opens towards practical utilization of machine learning-augmented Lattice Boltzmann CFD in real-world simulations.
arXiv Detail & Related papers (2024-05-22T17:23:15Z) - SDR-Former: A Siamese Dual-Resolution Transformer for Liver Lesion
Classification Using 3D Multi-Phase Imaging [59.78761085714715]
This study proposes a novel Siamese Dual-Resolution Transformer (SDR-Former) framework for liver lesion classification.
The proposed framework has been validated through comprehensive experiments on two clinical datasets.
To support the scientific community, we are releasing our extensive multi-phase MR dataset for liver lesion analysis to the public.
arXiv Detail & Related papers (2024-02-27T06:32:56Z) - Neural Spherical Harmonics for structurally coherent continuous
representation of diffusion MRI signal [0.3277163122167433]
We present a novel way to model diffusion magnetic resonance imaging (dMRI) datasets, that benefits from the structural coherence of the human brain.
Current methods model the dMRI signal in individual voxels, disregarding the intervoxel coherence that is present.
We use a neural network to parameterize a spherical harmonics series to represent the dMRI signal of a single subject from the Human Connectome Project dataset.
arXiv Detail & Related papers (2023-08-16T08:28:01Z) - Image Reconstruction for Accelerated MR Scan with Faster Fourier
Convolutional Neural Networks [87.87578529398019]
Partial scan is a common approach to accelerate Magnetic Resonance Imaging (MRI) data acquisition in both 2D and 3D settings.
We propose a novel convolutional operator called Faster Fourier Convolution (FasterFC) to replace the two consecutive convolution operations.
A 2D accelerated MRI method, FasterFC-End-to-End-VarNet, which uses FasterFC to improve the sensitivity maps and reconstruction quality.
A 3D accelerated MRI method called FasterFC-based Single-to-group Network (FAS-Net) that utilizes a single-to-group algorithm to guide k-space domain reconstruction
arXiv Detail & Related papers (2023-06-05T13:53:57Z) - $E(3) \times SO(3)$-Equivariant Networks for Spherical Deconvolution in
Diffusion MRI [4.726777092009554]
We present a framework for sparse deconvolution of volumes where each voxel contains a spherical signal.
This work constructs equivariant deep learning layers which respect to symmetries of spatial rotations, reflections, and translations.
arXiv Detail & Related papers (2023-04-12T18:37:32Z) - Spherical convolutional neural networks can improve brain microstructure
estimation from diffusion MRI data [0.35998666903987897]
Diffusion magnetic resonance imaging is sensitive to the microstructural properties of brain tissue.
Estimate clinically and scientifically relevant microstructural properties from the measured signals remains a highly challenging inverse problem that machine learning may help solve.
We trained a spherical convolutional neural network to predict the ground-truth parameter values from efficiently simulated noisy data.
arXiv Detail & Related papers (2022-11-17T20:52:00Z) - A deep learning driven pseudospectral PCE based FFT homogenization
algorithm for complex microstructures [68.8204255655161]
It is shown that the proposed method is able to predict central moments of interest while being magnitudes faster to evaluate than traditional approaches.
It is shown, that the proposed method is able to predict central moments of interest while being magnitudes faster to evaluate than traditional approaches.
arXiv Detail & Related papers (2021-10-26T07:02:14Z) - Influence Estimation and Maximization via Neural Mean-Field Dynamics [60.91291234832546]
We propose a novel learning framework using neural mean-field (NMF) dynamics for inference and estimation problems.
Our framework can simultaneously learn the structure of the diffusion network and the evolution of node infection probabilities.
arXiv Detail & Related papers (2021-06-03T00:02:05Z) - Equivariant Spherical Deconvolution: Learning Sparse Orientation
Distribution Functions from Spherical Data [0.0]
We present a rotation-equivariant unsupervised learning framework for the sparse deconvolution of non-negative scalar fields defined on the unit sphere.
We show improvements in terms of tractography and partial volume estimation on a multi-shell dataset of human subjects.
arXiv Detail & Related papers (2021-02-17T16:04:35Z) - 3D Solid Spherical Bispectrum CNNs for Biomedical Texture Analysis [3.579867431007686]
Locally Rotation Invariant (LRI) operators have shown great potential in biomedical texture analysis.
We investigate the benefits of using the bispectrum over the spectrum in the design of a LRI layer embedded in a shallow Convolutional Neural Network (CNN) for 3D image analysis.
arXiv Detail & Related papers (2020-04-28T09:01:13Z) - Multifold Acceleration of Diffusion MRI via Slice-Interleaved Diffusion
Encoding (SIDE) [50.65891535040752]
We propose a diffusion encoding scheme, called Slice-Interleaved Diffusion.
SIDE, that interleaves each diffusion-weighted (DW) image volume with slices encoded with different diffusion gradients.
We also present a method based on deep learning for effective reconstruction of DW images from the highly slice-undersampled data.
arXiv Detail & Related papers (2020-02-25T14:48:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.