論文の概要: Deploying Large Language Models With Retrieval Augmented Generation
- arxiv url: http://arxiv.org/abs/2411.11895v1
- Date: Thu, 07 Nov 2024 22:11:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-24 05:05:02.992064
- Title: Deploying Large Language Models With Retrieval Augmented Generation
- Title(参考訳): Retrieval Augmented Generationで大規模言語モデルをデプロイする
- Authors: Sonal Prabhune, Donald J. Berndt,
- Abstract要約: Retrieval Augmented Generationは、大規模言語モデルのトレーニングセット外のデータソースからの知識を統合するための重要なアプローチとして登場した。
本稿では,LLMとRAGを統合して情報検索を行うパイロットプロジェクトの開発とフィールドテストから得られた知見について述べる。
- 参考スコア(独自算出の注目度): 0.21485350418225244
- License:
- Abstract: Knowing that the generative capabilities of large language models (LLM) are sometimes hampered by tendencies to hallucinate or create non-factual responses, researchers have increasingly focused on methods to ground generated outputs in factual data. Retrieval Augmented Generation (RAG) has emerged as a key approach for integrating knowledge from data sources outside of the LLM's training set, including proprietary and up-to-date information. While many research papers explore various RAG strategies, their true efficacy is tested in real-world applications with actual data. The journey from conceiving an idea to actualizing it in the real world is a lengthy process. We present insights from the development and field-testing of a pilot project that integrates LLMs with RAG for information retrieval. Additionally, we examine the impacts on the information value chain, encompassing people, processes, and technology. Our aim is to identify the opportunities and challenges of implementing this emerging technology, particularly within the context of behavioral research in the information systems (IS) field. The contributions of this work include the development of best practices and recommendations for adopting this promising technology while ensuring compliance with industry regulations through a proposed AI governance model.
- Abstract(参考訳): 大規模言語モデル(LLM)の生成能力は、時に幻覚や非実効的な反応を引き起こす傾向によって妨げられていることを知る研究者は、実際のデータで生成された出力を基底にする方法にますます焦点を絞っている。
Retrieval Augmented Generation(RAG)は、LLMのトレーニングセット以外のデータソースからの知識を統合するための重要なアプローチとして、プロプライエタリと最新の情報を含む。
多くの研究論文で様々なRAG戦略が検討されているが、実際のデータを用いた実世界のアプリケーションでその真の有効性が検証されている。
アイデアの発想から現実の世界で実現への旅は、長いプロセスです。
本稿では,LLMとRAGを統合して情報検索を行うパイロットプロジェクトの開発とフィールドテストから得られた知見について述べる。
さらに、人、プロセス、テクノロジーを包含する情報価値連鎖への影響についても検討する。
我々の目的は、情報システム(IS)分野における行動研究の文脈において、この新興技術を実装する機会と課題を特定することである。
この作業のコントリビューションには、提案されたAIガバナンスモデルを通じて、業界規制の遵守を確保しながら、この有望なテクノロジを採用するためのベストプラクティスの開発と推奨が含まれている。
関連論文リスト
- A Comprehensive Survey of Retrieval-Augmented Generation (RAG): Evolution, Current Landscape and Future Directions [0.0]
RAGは、検索機構と生成言語モデルを組み合わせることで、出力の精度を高める。
近年の研究では, 検索効率向上のための新しい手法が注目されている。
RAGモデルの堅牢性向上に焦点をあてた今後の研究方向性が提案されている。
論文 参考訳(メタデータ) (2024-10-03T22:29:47Z) - Trustworthiness in Retrieval-Augmented Generation Systems: A Survey [59.26328612791924]
Retrieval-Augmented Generation (RAG)は、大規模言語モデル(LLM)の開発において、急速に重要なパラダイムへと成長してきた。
本稿では,RAGシステムの信頼性を,事実性,堅牢性,公正性,透明性,説明責任,プライバシの6つの面で評価する統一的な枠組みを提案する。
論文 参考訳(メタデータ) (2024-09-16T09:06:44Z) - Data-Centric AI in the Age of Large Language Models [51.20451986068925]
本稿では,大規模言語モデル(LLM)に着目した,AI研究におけるデータ中心の視点を提案する。
本研究では,LLMの発達段階(事前学習や微調整など)や推論段階(文脈内学習など)において,データが有効であることを示す。
データを中心とした4つのシナリオを特定し、データ中心のベンチマークとデータキュレーション、データ属性、知識伝達、推論コンテキスト化をカバーします。
論文 参考訳(メタデータ) (2024-06-20T16:34:07Z) - A Survey on RAG Meeting LLMs: Towards Retrieval-Augmented Large Language Models [71.25225058845324]
大規模言語モデル(LLM)は、言語理解と生成において革命的な能力を示している。
Retrieval-Augmented Generation (RAG)は、信頼性と最新の外部知識を提供する。
RA-LLMは、モデルの内部知識に頼るのではなく、外部および権威的な知識ベースを活用するために登場した。
論文 参考訳(メタデータ) (2024-05-10T02:48:45Z) - A Closer Look at the Limitations of Instruction Tuning [52.587607091917214]
インストラクションチューニング(IT)は,大規模言語モデル(LLM)における知識やスキルの向上に失敗することを示す。
また、一般的なIT改善手法は、シンプルなLoRA微調整モデルよりも性能改善につながるものではないことも示している。
この結果から,事前学習した知識のみから生成した応答は,オープンソースデータセット上でITから新たな知識を学習するモデルによって,一貫した応答性能が向上することが判明した。
論文 参考訳(メタデータ) (2024-02-03T04:45:25Z) - FAIR Enough: How Can We Develop and Assess a FAIR-Compliant Dataset for Large Language Models' Training? [3.0406004578714008]
大規模言語モデルの急速な進化は、AI開発における倫理的考慮とデータの整合性の必要性を強調している。
FAIRの原則は倫理データのスチュワードシップに不可欠であるが、LLMトレーニングデータの文脈におけるそれらの特定の応用は未調査領域のままである。
本稿では,FAIR の原則を LLM 開発ライフサイクルに統合する新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2024-01-19T21:21:02Z) - Large Language Models for Generative Information Extraction: A Survey [89.71273968283616]
大規模言語モデル(LLM)は、テキスト理解と生成において顕著な能力を示した。
各種IEサブタスクと技術の観点から,これらの作品を分類して概観する。
我々は,最も先進的な手法を実証的に分析し,LLMによるIEタスクの出現傾向を明らかにする。
論文 参考訳(メタデータ) (2023-12-29T14:25:22Z) - Retrieval-Augmented Generation for Large Language Models: A Survey [17.82361213043507]
大きな言語モデル(LLM)には印象的な能力があるが、幻覚のような課題に直面している。
Retrieval-Augmented Generation (RAG) は,外部データベースからの知識を取り入れた,有望なソリューションとして登場した。
論文 参考訳(メタデータ) (2023-12-18T07:47:33Z) - The Efficiency Spectrum of Large Language Models: An Algorithmic Survey [54.19942426544731]
LLM(Large Language Models)の急速な成長は、様々なドメインを変換する原動力となっている。
本稿では,LLMのエンドツーエンドのアルゴリズム開発に不可欠な多面的効率性について検討する。
論文 参考訳(メタデータ) (2023-12-01T16:00:25Z) - A Study on the Implementation of Generative AI Services Using an
Enterprise Data-Based LLM Application Architecture [0.0]
本研究では,Large Language Models (LLM) アプリケーションアーキテクチャを用いて生成AIサービスを実装する手法を提案する。
この研究は、不十分なデータの問題を軽減するための戦略を練り上げ、カスタマイズされたソリューションを提供している。
この研究の重要な貢献は、検索型拡張世代(RAG)モデルの開発である。
論文 参考訳(メタデータ) (2023-09-03T07:03:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。