LoRA Unlearns More and Retains More (Student Abstract)
- URL: http://arxiv.org/abs/2411.11907v1
- Date: Sat, 16 Nov 2024 16:47:57 GMT
- Title: LoRA Unlearns More and Retains More (Student Abstract)
- Authors: Atharv Mittal,
- Abstract summary: PruneLoRA reduces the need for large-scale parameter updates by applying low-rank updates to the model.
We leverage LoRA to selectively modify a subset of the pruned model's parameters, thereby reducing the computational cost, memory requirements and improving the model's ability to retain performance on the remaining classes.
- Score: 0.0
- License:
- Abstract: Due to increasing privacy regulations and regulatory compliance, Machine Unlearning (MU) has become essential. The goal of unlearning is to remove information related to a specific class from a model. Traditional approaches achieve exact unlearning by retraining the model on the remaining dataset, but incur high computational costs. This has driven the development of more efficient unlearning techniques, including model sparsification techniques, which boost computational efficiency, but degrade the model's performance on the remaining classes. To mitigate these issues, we propose a novel method, PruneLoRA which introduces a new MU paradigm, termed prune first, then adapt, then unlearn. LoRA (Hu et al. 2022) reduces the need for large-scale parameter updates by applying low-rank updates to the model. We leverage LoRA to selectively modify a subset of the pruned model's parameters, thereby reducing the computational cost, memory requirements and improving the model's ability to retain performance on the remaining classes. Experimental Results across various metrics showcase that our method outperforms other approximate MU methods and bridges the gap between exact and approximate unlearning. Our code is available at https://github.com/vlgiitr/LoRA-Unlearn.
Related papers
- Machine Unlearning on Pre-trained Models by Residual Feature Alignment Using LoRA [15.542668474378633]
We propose a novel and efficient machine unlearning method on pre-trained models.
We leverage LoRA to decompose the model's intermediate features into pre-trained features and residual features.
The method aims to learn the zero residuals on the retained set and shifted residuals on the unlearning set.
arXiv Detail & Related papers (2024-11-13T08:56:35Z) - Attribute-to-Delete: Machine Unlearning via Datamodel Matching [65.13151619119782]
Machine unlearning -- efficiently removing a small "forget set" training data on a pre-divertrained machine learning model -- has recently attracted interest.
Recent research shows that machine unlearning techniques do not hold up in such a challenging setting.
arXiv Detail & Related papers (2024-10-30T17:20:10Z) - Getting More Juice Out of the SFT Data: Reward Learning from Human Demonstration Improves SFT for LLM Alignment [65.15914284008973]
We propose to leverage an Inverse Reinforcement Learning (IRL) technique to simultaneously build an reward model and a policy model.
We show that the proposed algorithms converge to the stationary solutions of the IRL problem.
Our results indicate that it is beneficial to leverage reward learning throughout the entire alignment process.
arXiv Detail & Related papers (2024-05-28T07:11:05Z) - Learn to Unlearn for Deep Neural Networks: Minimizing Unlearning
Interference with Gradient Projection [56.292071534857946]
Recent data-privacy laws have sparked interest in machine unlearning.
Challenge is to discard information about the forget'' data without altering knowledge about remaining dataset.
We adopt a projected-gradient based learning method, named as Projected-Gradient Unlearning (PGU)
We provide empirically evidence to demonstrate that our unlearning method can produce models that behave similar to models retrained from scratch across various metrics even when the training dataset is no longer accessible.
arXiv Detail & Related papers (2023-12-07T07:17:24Z) - Model Sparsity Can Simplify Machine Unlearning [33.18951938708467]
In response to recent data regulation requirements, machine unlearning (MU) has emerged as a critical process.
Our study introduces a novel model-based perspective: model sparsification via weight pruning.
We show in both theory and practice that model sparsity can boost the multi-criteria unlearning performance of an approximate unlearner.
arXiv Detail & Related papers (2023-04-11T02:12:02Z) - Oracle Inequalities for Model Selection in Offline Reinforcement
Learning [105.74139523696284]
We study the problem of model selection in offline RL with value function approximation.
We propose the first model selection algorithm for offline RL that achieves minimax rate-optimal inequalities up to logarithmic factors.
We conclude with several numerical simulations showing it is capable of reliably selecting a good model class.
arXiv Detail & Related papers (2022-11-03T17:32:34Z) - Deep Regression Unlearning [6.884272840652062]
We introduce deep regression unlearning methods that generalize well and are robust to privacy attacks.
We conduct regression unlearning experiments for computer vision, natural language processing and forecasting applications.
arXiv Detail & Related papers (2022-10-15T05:00:20Z) - Fast Yet Effective Machine Unlearning [6.884272840652062]
We introduce a novel machine unlearning framework with error-maximizing noise generation and impair-repair based weight manipulation.
We show excellent unlearning while substantially retaining the overall model accuracy.
This work is an important step towards fast and easy implementation of unlearning in deep networks.
arXiv Detail & Related papers (2021-11-17T07:29:24Z) - Machine Unlearning of Features and Labels [72.81914952849334]
We propose first scenarios for unlearning and labels in machine learning models.
Our approach builds on the concept of influence functions and realizes unlearning through closed-form updates of model parameters.
arXiv Detail & Related papers (2021-08-26T04:42:24Z) - Few-Shot Lifelong Learning [35.05196800623617]
Few-Shot Lifelong Learning enables deep learning models to perform lifelong/continual learning on few-shot data.
Our method selects very few parameters from the model for training every new set of classes instead of training the full model.
We experimentally show that our method significantly outperforms existing methods on the miniImageNet, CIFAR-100, and CUB-200 datasets.
arXiv Detail & Related papers (2021-03-01T13:26:57Z) - Transfer Learning without Knowing: Reprogramming Black-box Machine
Learning Models with Scarce Data and Limited Resources [78.72922528736011]
We propose a novel approach, black-box adversarial reprogramming (BAR), that repurposes a well-trained black-box machine learning model.
Using zeroth order optimization and multi-label mapping techniques, BAR can reprogram a black-box ML model solely based on its input-output responses.
BAR outperforms state-of-the-art methods and yields comparable performance to the vanilla adversarial reprogramming method.
arXiv Detail & Related papers (2020-07-17T01:52:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.