Fast Convergence of Softmax Policy Mirror Ascent
- URL: http://arxiv.org/abs/2411.12042v1
- Date: Mon, 18 Nov 2024 20:27:13 GMT
- Title: Fast Convergence of Softmax Policy Mirror Ascent
- Authors: Reza Asad, Reza Babanezhad, Issam Laradji, Nicolas Le Roux, Sharan Vaswani,
- Abstract summary: Natural policy gradient (NPG) is a common policy optimization algorithm and can be viewed as mirror ascent in the space of probabilities.
We refine this algorithm, removing its need for a normalization across actions and analyze the resulting method (referred to as SPMA)
- Score: 11.540610656150958
- License:
- Abstract: Natural policy gradient (NPG) is a common policy optimization algorithm and can be viewed as mirror ascent in the space of probabilities. Recently, Vaswani et al. [2021] introduced a policy gradient method that corresponds to mirror ascent in the dual space of logits. We refine this algorithm, removing its need for a normalization across actions and analyze the resulting method (referred to as SPMA). For tabular MDPs, we prove that SPMA with a constant step-size matches the linear convergence of NPG and achieves a faster convergence than constant step-size (accelerated) softmax policy gradient. To handle large state-action spaces, we extend SPMA to use a log-linear policy parameterization. Unlike that for NPG, generalizing SPMA to the linear function approximation (FA) setting does not require compatible function approximation. Unlike MDPO, a practical generalization of NPG, SPMA with linear FA only requires solving convex softmax classification problems. We prove that SPMA achieves linear convergence to the neighbourhood of the optimal value function. We extend SPMA to handle non-linear FA and evaluate its empirical performance on the MuJoCo and Atari benchmarks. Our results demonstrate that SPMA consistently achieves similar or better performance compared to MDPO, PPO and TRPO.
Related papers
- Moreau Envelope ADMM for Decentralized Weakly Convex Optimization [55.2289666758254]
This paper proposes a proximal variant of the alternating direction method of multipliers (ADMM) for distributed optimization.
The results of our numerical experiments indicate that our method is faster and more robust than widely-used approaches.
arXiv Detail & Related papers (2023-08-31T14:16:30Z) - Nonconvex Stochastic Bregman Proximal Gradient Method for Nonconvex Composite Problems [9.202586157819693]
gradient methods for non composite objective functions typically rely on the Lipschitz smoothness of the differentiable part.
We propose a better approximation model that handles non-Lipschitz gradient in non objectives.
We show it achieves optimal robustness in terms of step selection sensitivity.
arXiv Detail & Related papers (2023-06-26T08:54:46Z) - Last-Iterate Convergent Policy Gradient Primal-Dual Methods for
Constrained MDPs [107.28031292946774]
We study the problem of computing an optimal policy of an infinite-horizon discounted Markov decision process (constrained MDP)
We develop two single-time-scale policy-based primal-dual algorithms with non-asymptotic convergence of their policy iterates to an optimal constrained policy.
To the best of our knowledge, this work appears to be the first non-asymptotic policy last-iterate convergence result for single-time-scale algorithms in constrained MDPs.
arXiv Detail & Related papers (2023-06-20T17:27:31Z) - Regularization and Variance-Weighted Regression Achieves Minimax
Optimality in Linear MDPs: Theory and Practice [79.48432795639403]
Mirror descent value iteration (MDVI) is an abstraction of Kullback-Leibler (KL) and entropy-regularized reinforcement learning (RL)
We study MDVI with linear function approximation through its sample complexity required to identify an $varepsilon$-optimal policy.
We present Variance-Weighted Least-Squares MDVI, the first theoretical algorithm that achieves nearly minimax optimal sample complexity for infinite-horizon linear MDPs.
arXiv Detail & Related papers (2023-05-22T16:13:05Z) - Local Optimization Achieves Global Optimality in Multi-Agent
Reinforcement Learning [139.53668999720605]
We present a multi-agent PPO algorithm in which the local policy of each agent is updated similarly to vanilla PPO.
We prove that with standard regularity conditions on the Markov game and problem-dependent quantities, our algorithm converges to the globally optimal policy at a sublinear rate.
arXiv Detail & Related papers (2023-05-08T16:20:03Z) - Smoothing Policy Iteration for Zero-sum Markov Games [9.158672246275348]
We propose the smoothing policy robustness (SPI) algorithm to solve the zero-sum MGs approximately.
Specially, the adversarial policy is served as the weight function to enable an efficient sampling over action spaces.
We also propose a model-based algorithm called Smooth adversarial Actor-critic (SaAC) by extending SPI with the function approximations.
arXiv Detail & Related papers (2022-12-03T14:39:06Z) - Geometric Policy Iteration for Markov Decision Processes [4.746723775952672]
Recently discovered polyhedral structures of the value function for finite state-action discounted Markov decision processes (MDP) shed light on understanding the success of reinforcement learning.
We propose a new algorithm, emphGeometric Policy Iteration, to solve discounted MDPs.
arXiv Detail & Related papers (2022-06-12T18:15:24Z) - Convergence and sample complexity of natural policy gradient primal-dual methods for constrained MDPs [21.347689976296834]
We employ the natural policy gradient method to solve the discounted optimal optimal rate problem.
We also provide convergence and finite-sample guarantees for two sample-based NPG-PD algorithms.
arXiv Detail & Related papers (2022-06-06T04:28:04Z) - Bregman Gradient Policy Optimization [97.73041344738117]
We design a Bregman gradient policy optimization for reinforcement learning based on Bregman divergences and momentum techniques.
VR-BGPO reaches the best complexity $tilde(epsilon-3)$ for finding an $epsilon$stationary point only requiring one trajectory at each iteration.
arXiv Detail & Related papers (2021-06-23T01:08:54Z) - Softmax Policy Gradient Methods Can Take Exponential Time to Converge [60.98700344526674]
The softmax policy gradient (PG) method is arguably one of the de facto implementations of policy optimization in modern reinforcement learning.
We demonstrate that softmax PG methods can take exponential time -- in terms of $mathcalS|$ and $frac11-gamma$ -- to converge.
arXiv Detail & Related papers (2021-02-22T18:56:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.