ITACLIP: Boosting Training-Free Semantic Segmentation with Image, Text, and Architectural Enhancements
- URL: http://arxiv.org/abs/2411.12044v1
- Date: Mon, 18 Nov 2024 20:31:38 GMT
- Title: ITACLIP: Boosting Training-Free Semantic Segmentation with Image, Text, and Architectural Enhancements
- Authors: M. Arda Aydın, Efe Mert Çırpar, Elvin Abdinli, Gozde Unal, Yusuf H. Sahin,
- Abstract summary: Recent advances in Vision Language Models have reshaped the evaluation paradigm in computer vision tasks.
These foundational models, especially CLIP, have accelerated research in open-vocabulary computer vision tasks.
In this study, we enhance the semantic segmentation performance of CLIP by introducing new modules and modifications.
Our training-free method, ITACLIP, outperforms current state-of-the-art approaches on segmentation benchmarks.
- Score: 0.6990493129893112
- License:
- Abstract: Recent advances in foundational Vision Language Models (VLMs) have reshaped the evaluation paradigm in computer vision tasks. These foundational models, especially CLIP, have accelerated research in open-vocabulary computer vision tasks, including Open-Vocabulary Semantic Segmentation (OVSS). Although the initial results are promising, the dense prediction capabilities of VLMs still require further improvement. In this study, we enhance the semantic segmentation performance of CLIP by introducing new modules and modifications: 1) architectural changes in the last layer of ViT and the incorporation of attention maps from the middle layers with the last layer, 2) Image Engineering: applying data augmentations to enrich input image representations, and 3) using Large Language Models (LLMs) to generate definitions and synonyms for each class name to leverage CLIP's open-vocabulary capabilities. Our training-free method, ITACLIP, outperforms current state-of-the-art approaches on segmentation benchmarks such as COCO-Stuff, COCO-Object, Pascal Context, and Pascal VOC. Our code is available at https://github.com/m-arda-aydn/ITACLIP.
Related papers
- CLIPer: Hierarchically Improving Spatial Representation of CLIP for Open-Vocabulary Semantic Segmentation [45.036137066263386]
Contrastive Language-Image Pre-training (CLIP) exhibits strong zero-shot classification ability on various image-level tasks.
We present a novel hierarchical framework, named CLIPer, that hierarchically improves spatial representation of CLIP.
Our proposed CLIPer achieves the state-of-the-art performance on seven segmentation datasets.
arXiv Detail & Related papers (2024-11-21T04:54:30Z) - UMG-CLIP: A Unified Multi-Granularity Vision Generalist for Open-World Understanding [90.74967596080982]
This paper extends Contrastive Language-Image Pre-training (CLIP) with multi-granularity alignment.
We develop a Unified Multi-Granularity learning framework, termed UMG-CLIP, which simultaneously empowers the model with versatile perception abilities.
With parameter efficient tuning, UMG-CLIP surpasses current widely used CLIP variants and achieves state-of-the-art performance on diverse image understanding benchmarks.
arXiv Detail & Related papers (2024-01-12T06:35:09Z) - SILC: Improving Vision Language Pretraining with Self-Distillation [113.50400246862056]
We introduce SILC, a novel framework for vision language pretraining.
SILC improves image-text contrastive learning with the simple addition of local-to-global correspondence learning by self-distillation.
We show that distilling local image features from an exponential moving average (EMA) teacher model significantly improves model performance on dense predictions tasks like detection and segmentation.
arXiv Detail & Related papers (2023-10-20T08:44:47Z) - Symmetrical Linguistic Feature Distillation with CLIP for Scene Text
Recognition [77.93678598476149]
We establish a novel Symmetrical Linguistic Feature Distillation framework (named CLIP-OCR)
By cascading the CLIP image encoder with the reversed CLIP text encoder, a symmetrical structure is built with an image-to-text feature flow.
Extensive experiments demonstrate the effectiveness of CLIP-OCR with 93.8% average accuracy on six popular STR benchmarks.
arXiv Detail & Related papers (2023-10-08T04:00:20Z) - CLIP is Also an Efficient Segmenter: A Text-Driven Approach for Weakly
Supervised Semantic Segmentation [19.208559353954833]
This paper explores the potential of Contrastive Language-Image Pre-training models (CLIP) to localize different categories with only image-level labels.
To efficiently generate high-quality segmentation masks from CLIP, we propose a novel WSSS framework called CLIP-ES.
arXiv Detail & Related papers (2022-12-16T06:23:59Z) - SegCLIP: Patch Aggregation with Learnable Centers for Open-Vocabulary
Semantic Segmentation [26.079055078561986]
We propose a CLIP-based model named SegCLIP for the topic of open-vocabulary segmentation.
The main idea is to gather patches with learnable centers to semantic regions through training on text-image pairs.
Experimental results show that our model achieves comparable or superior segmentation accuracy.
arXiv Detail & Related papers (2022-11-27T12:38:52Z) - Non-Contrastive Learning Meets Language-Image Pre-Training [145.6671909437841]
We study the validity of non-contrastive language-image pre-training (nCLIP)
We introduce xCLIP, a multi-tasking framework combining CLIP and nCLIP, and show that nCLIP aids CLIP in enhancing feature semantics.
arXiv Detail & Related papers (2022-10-17T17:57:46Z) - CLIP-ViP: Adapting Pre-trained Image-Text Model to Video-Language
Representation Alignment [146.3128011522151]
We propose a Omni Crossmodal Learning method equipped with a Video Proxy mechanism on the basis of CLIP, namely CLIP-ViP.
Our approach improves the performance of CLIP on video-text retrieval by a large margin.
Our model also achieves SOTA results on a variety of datasets, including MSR-VTT, DiDeMo, LSMDC, and ActivityNet.
arXiv Detail & Related papers (2022-09-14T05:47:02Z) - A Simple Baseline for Zero-shot Semantic Segmentation with Pre-trained
Vision-language Model [61.58071099082296]
It is unclear how to make zero-shot recognition working well on broader vision problems, such as object detection and semantic segmentation.
In this paper, we target for zero-shot semantic segmentation, by building it on an off-the-shelf pre-trained vision-language model, i.e., CLIP.
Our experimental results show that this simple framework surpasses previous state-of-the-arts by a large margin.
arXiv Detail & Related papers (2021-12-29T18:56:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.