Does Unlearning Truly Unlearn? A Black Box Evaluation of LLM Unlearning Methods
- URL: http://arxiv.org/abs/2411.12103v2
- Date: Wed, 20 Nov 2024 02:23:11 GMT
- Title: Does Unlearning Truly Unlearn? A Black Box Evaluation of LLM Unlearning Methods
- Authors: Jai Doshi, Asa Cooper Stickland,
- Abstract summary: Large language model unlearning aims to remove harmful information that LLMs have learnt to prevent their use for malicious purposes.
LMU and RMU have been proposed as two methods for LLM unlearning, achieving impressive results on unlearning benchmarks.
- Score: 1.9799527196428242
- License:
- Abstract: Large language model unlearning aims to remove harmful information that LLMs have learnt to prevent their use for malicious purposes. LLMU and RMU have been proposed as two methods for LLM unlearning, achieving impressive results on unlearning benchmarks. We study in detail the efficacy of these methods by evaluating their impact on general model capabilities on the WMDP benchmark as well as a biology benchmark we create. Our experiments show that RMU generally leads to better preservation of model capabilities, for similar or better unlearning. We further test the robustness of these methods and find that doing 5-shot prompting or rephrasing the question in simple ways can lead to an over ten-fold increase in accuracy on unlearning benchmarks. Finally, we show that training on unrelated data can almost completely recover pre-unlearning performance, demonstrating that these methods fail at truly unlearning. The code is available at: https://github.com/JaiDoshi/Knowledge-Erasure.
Related papers
- A Closer Look at Machine Unlearning for Large Language Models [46.245404272612795]
Large language models (LLMs) may memorize sensitive or copyrighted content, raising privacy and legal concerns.
We discuss several issues in machine unlearning for LLMs and provide our insights on possible approaches.
arXiv Detail & Related papers (2024-10-10T16:56:05Z) - Position: LLM Unlearning Benchmarks are Weak Measures of Progress [31.957968729934745]
We find that existing benchmarks provide an overly optimistic and potentially misleading view on the effectiveness of candidate unlearning methods.
We identify that existing benchmarks are particularly vulnerable to modifications that introduce even loose dependencies between the forget and retain information.
arXiv Detail & Related papers (2024-10-03T18:07:25Z) - MEOW: MEMOry Supervised LLM Unlearning Via Inverted Facts [29.593170782882563]
Large Language Models (LLMs) can memorize sensitive information, raising concerns about potential misuse.
Previous practices face three key challenges: Utility, efficiency, and robustness.
We propose MEOW, a gradient descent-based unlearning method.
arXiv Detail & Related papers (2024-09-18T09:55:48Z) - LLMs-as-Instructors: Learning from Errors Toward Automating Model Improvement [93.38736019287224]
"LLMs-as-Instructors" framework autonomously enhances the training of smaller target models.
Inspired by the theory of "Learning from Errors", this framework employs an instructor LLM to meticulously analyze the specific errors within a target model.
Within this framework, we implement two strategies: "Learning from Error," which focuses solely on incorrect responses to tailor training data, and "Learning from Error by Contrast", which uses contrastive learning to analyze both correct and incorrect responses for a deeper understanding of errors.
arXiv Detail & Related papers (2024-06-29T17:16:04Z) - Split, Unlearn, Merge: Leveraging Data Attributes for More Effective Unlearning in LLMs [18.629717934007513]
"SPlit, UNlearn, MerGE" (SPUNGE) is a framework that can be used with any unlearning method to amplify its effectiveness.
We empirically demonstrate that SPUNGE significantly improves the performance of two recent unlearning methods on state-of-the-art LLMs.
arXiv Detail & Related papers (2024-06-17T17:35:52Z) - Unlearning with Control: Assessing Real-world Utility for Large Language Model Unlearning [97.2995389188179]
Recent research has begun to approach large language models (LLMs) unlearning via gradient ascent (GA)
Despite their simplicity and efficiency, we suggest that GA-based methods face the propensity towards excessive unlearning.
We propose several controlling methods that can regulate the extent of excessive unlearning.
arXiv Detail & Related papers (2024-06-13T14:41:00Z) - Alpaca against Vicuna: Using LLMs to Uncover Memorization of LLMs [61.04246774006429]
We introduce a black-box prompt optimization method that uses an attacker LLM agent to uncover higher levels of memorization in a victim agent.
We observe that our instruction-based prompts generate outputs with 23.7% higher overlap with training data compared to the baseline prefix-suffix measurements.
Our findings show that instruction-tuned models can expose pre-training data as much as their base-models, if not more so, and using instructions proposed by other LLMs can open a new avenue of automated attacks.
arXiv Detail & Related papers (2024-03-05T19:32:01Z) - Querying Easily Flip-flopped Samples for Deep Active Learning [63.62397322172216]
Active learning is a machine learning paradigm that aims to improve the performance of a model by strategically selecting and querying unlabeled data.
One effective selection strategy is to base it on the model's predictive uncertainty, which can be interpreted as a measure of how informative a sample is.
This paper proposes the it least disagree metric (LDM) as the smallest probability of disagreement of the predicted label.
arXiv Detail & Related papers (2024-01-18T08:12:23Z) - Language models are weak learners [71.33837923104808]
We show that prompt-based large language models can operate effectively as weak learners.
We incorporate these models into a boosting approach, which can leverage the knowledge within the model to outperform traditional tree-based boosting.
Results illustrate the potential for prompt-based LLMs to function not just as few-shot learners themselves, but as components of larger machine learning pipelines.
arXiv Detail & Related papers (2023-06-25T02:39:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.