A Review on Generative AI Models for Synthetic Medical Text, Time Series, and Longitudinal Data
- URL: http://arxiv.org/abs/2411.12274v1
- Date: Tue, 19 Nov 2024 06:53:54 GMT
- Title: A Review on Generative AI Models for Synthetic Medical Text, Time Series, and Longitudinal Data
- Authors: Mohammad Loni, Fatemeh Poursalim, Mehdi Asadi, Arash Gharehbaghi,
- Abstract summary: This paper presents the results of a novel scoping review on the practical models for generating three different types of synthetic health records (SHRs)
In total, 52 publications met the eligibility criteria for generating medical time series (22), longitudinal data (17), and medical text (13).
Privacy preservation was found to be the main research objective of the studied papers, along with class imbalance, data scarcity, and data imputation as the other objectives.
- Score: 0.3374875022248865
- License:
- Abstract: This paper presents the results of a novel scoping review on the practical models for generating three different types of synthetic health records (SHRs): medical text, time series, and longitudinal data. The innovative aspects of the review, which incorporate study objectives, data modality, and research methodology of the reviewed studies, uncover the importance and the scope of the topic for the digital medicine context. In total, 52 publications met the eligibility criteria for generating medical time series (22), longitudinal data (17), and medical text (13). Privacy preservation was found to be the main research objective of the studied papers, along with class imbalance, data scarcity, and data imputation as the other objectives. The adversarial network-based, probabilistic, and large language models exhibited superiority for generating synthetic longitudinal data, time series, and medical texts, respectively. Finding a reliable performance measure to quantify SHR re-identification risk is the major research gap of the topic.
Related papers
- Decoding MIE: A Novel Dataset Approach Using Topic Extraction and Affiliation Parsing [0.0]
This study introduces a novel dataset derived from the Medical Informatics Europe (MIE) Conference proceedings.
We extracted and processed metadata and abstract from 4,606 articles published in the "Studies in Health Technology and Informatics" journal series.
arXiv Detail & Related papers (2024-10-06T19:34:23Z) - Generative AI for Synthetic Data Across Multiple Medical Modalities: A Systematic Review of Recent Developments and Challenges [2.1835659964186087]
This paper presents a systematic review of generative models used to synthesize various medical data types.
Our study encompasses a broad array of medical data modalities and explores various generative models.
arXiv Detail & Related papers (2024-06-27T14:00:11Z) - Recent Advances in Predictive Modeling with Electronic Health Records [71.19967863320647]
utilizing EHR data for predictive modeling presents several challenges due to its unique characteristics.
Deep learning has demonstrated its superiority in various applications, including healthcare.
arXiv Detail & Related papers (2024-02-02T00:31:01Z) - De-identification of clinical free text using natural language
processing: A systematic review of current approaches [48.343430343213896]
Natural language processing has repeatedly demonstrated its feasibility in automating the de-identification process.
Our study aims to provide systematic evidence on how the de-identification of clinical free text has evolved in the last thirteen years.
arXiv Detail & Related papers (2023-11-28T13:20:41Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
This paper introduces a novel, end-to-end diffusion-based risk prediction model, named MedDiffusion.
It enhances risk prediction performance by creating synthetic patient data during training to enlarge sample space.
It discerns hidden relationships between patient visits using a step-wise attention mechanism, enabling the model to automatically retain the most vital information for generating high-quality data.
arXiv Detail & Related papers (2023-10-04T01:36:30Z) - Foresight -- Deep Generative Modelling of Patient Timelines using
Electronic Health Records [46.024501445093755]
Temporal modelling of medical history can be used to forecast and simulate future events, estimate risk, suggest alternative diagnoses or forecast complications.
We present Foresight, a novel GPT3-based pipeline that uses NER+L tools (i.e. MedCAT) to convert document text into structured, coded concepts.
arXiv Detail & Related papers (2022-12-13T19:06:00Z) - Textual Data Augmentation for Patient Outcomes Prediction [67.72545656557858]
We propose a novel data augmentation method to generate artificial clinical notes in patients' Electronic Health Records.
We fine-tune the generative language model GPT-2 to synthesize labeled text with the original training data.
We evaluate our method on the most common patient outcome, i.e., the 30-day readmission rate.
arXiv Detail & Related papers (2022-11-13T01:07:23Z) - Time Series Prediction using Deep Learning Methods in Healthcare [0.0]
Traditional machine learning methods face two main challenges in dealing with healthcare predictive analytics tasks.
The high-dimensional nature of healthcare data needs labor-intensive processes to select an appropriate set of features for each new task.
Recent deep learning methods have shown promising performance for various healthcare prediction tasks.
arXiv Detail & Related papers (2021-08-30T18:14:27Z) - Self-supervised Answer Retrieval on Clinical Notes [68.87777592015402]
We introduce CAPR, a rule-based self-supervision objective for training Transformer language models for domain-specific passage matching.
We apply our objective in four Transformer-based architectures: Contextual Document Vectors, Bi-, Poly- and Cross-encoders.
We report that CAPR outperforms strong baselines in the retrieval of domain-specific passages and effectively generalizes across rule-based and human-labeled passages.
arXiv Detail & Related papers (2021-08-02T10:42:52Z) - An efficient representation of chronological events in medical texts [9.118144540451514]
We proposed a systematic methodology for learning from chronological events available in clinical notes.
The proposed methodological it path signature framework creates a non-parametric hierarchical representation of sequential events of any type.
The methodology was developed and externally validated using the largest in the UK secondary care mental health EHR data.
arXiv Detail & Related papers (2020-10-16T14:54:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.