An efficient representation of chronological events in medical texts
- URL: http://arxiv.org/abs/2010.08433v2
- Date: Sat, 24 Oct 2020 21:52:03 GMT
- Title: An efficient representation of chronological events in medical texts
- Authors: Andrey Kormilitzin, Nemanja Vaci, Qiang Liu, Hao Ni, Goran Nenadic,
Alejo Nevado-Holgado
- Abstract summary: We proposed a systematic methodology for learning from chronological events available in clinical notes.
The proposed methodological it path signature framework creates a non-parametric hierarchical representation of sequential events of any type.
The methodology was developed and externally validated using the largest in the UK secondary care mental health EHR data.
- Score: 9.118144540451514
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work we addressed the problem of capturing sequential information
contained in longitudinal electronic health records (EHRs). Clinical notes,
which is a particular type of EHR data, are a rich source of information and
practitioners often develop clever solutions how to maximise the sequential
information contained in free-texts. We proposed a systematic methodology for
learning from chronological events available in clinical notes. The proposed
methodological {\it path signature} framework creates a non-parametric
hierarchical representation of sequential events of any type and can be used as
features for downstream statistical learning tasks. The methodology was
developed and externally validated using the largest in the UK secondary care
mental health EHR data on a specific task of predicting survival risk of
patients diagnosed with Alzheimer's disease. The signature-based model was
compared to a common survival random forest model. Our results showed a
15.4$\%$ increase of risk prediction AUC at the time point of 20 months after
the first admission to a specialist memory clinic and the signature method
outperformed the baseline mixed-effects model by 13.2 $\%$.
Related papers
- MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
This paper introduces a novel, end-to-end diffusion-based risk prediction model, named MedDiffusion.
It enhances risk prediction performance by creating synthetic patient data during training to enlarge sample space.
It discerns hidden relationships between patient visits using a step-wise attention mechanism, enabling the model to automatically retain the most vital information for generating high-quality data.
arXiv Detail & Related papers (2023-10-04T01:36:30Z) - Foresight -- Deep Generative Modelling of Patient Timelines using
Electronic Health Records [46.024501445093755]
Temporal modelling of medical history can be used to forecast and simulate future events, estimate risk, suggest alternative diagnoses or forecast complications.
We present Foresight, a novel GPT3-based pipeline that uses NER+L tools (i.e. MedCAT) to convert document text into structured, coded concepts.
arXiv Detail & Related papers (2022-12-13T19:06:00Z) - Label Dependent Attention Model for Disease Risk Prediction Using
Multimodal Electronic Health Records [8.854691034104071]
Disease risk prediction has attracted increasing attention in the field of modern healthcare.
One challenge of applying AI models for risk prediction lies in generating interpretable evidence.
We propose the method of jointly embedding words and labels.
arXiv Detail & Related papers (2022-01-18T07:21:20Z) - A Graph-based Imputation Method for Sparse Medical Records [3.136861161060886]
We propose a graph-based imputation method that is robust to sparsity and to unreliable unmeasured events.
Results indicate that the model learns to embed different event types in a clinically meaningful way.
arXiv Detail & Related papers (2021-11-17T13:06:08Z) - Time Series Prediction using Deep Learning Methods in Healthcare [0.0]
Traditional machine learning methods face two main challenges in dealing with healthcare predictive analytics tasks.
The high-dimensional nature of healthcare data needs labor-intensive processes to select an appropriate set of features for each new task.
Recent deep learning methods have shown promising performance for various healthcare prediction tasks.
arXiv Detail & Related papers (2021-08-30T18:14:27Z) - Self-Supervised Graph Learning with Hyperbolic Embedding for Temporal
Health Event Prediction [13.24834156675212]
We propose a hyperbolic embedding method with information flow to pre-train medical code representations in a hierarchical structure.
We incorporate these pre-trained representations into a graph neural network to detect disease complications.
We present a new hierarchy-enhanced historical prediction proxy task in our self-supervised learning framework to fully utilize EHR data.
arXiv Detail & Related papers (2021-06-09T00:42:44Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
This paper proposes a novel contrastive regularized clinical classification model.
We introduce two unique positive sampling strategies specifically tailored for EHR data.
Our framework yields highly competitive experimental results in predicting the mortality risk on real-world COVID-19 EHR data.
arXiv Detail & Related papers (2021-04-07T06:02:04Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
Outcome prediction from clinical text can prevent doctors from overlooking possible risks.
Diagnoses at discharge, procedures performed, in-hospital mortality and length-of-stay prediction are four common outcome prediction targets.
We propose clinical outcome pre-training to integrate knowledge about patient outcomes from multiple public sources.
arXiv Detail & Related papers (2021-02-08T10:26:44Z) - BiteNet: Bidirectional Temporal Encoder Network to Predict Medical
Outcomes [53.163089893876645]
We propose a novel self-attention mechanism that captures the contextual dependency and temporal relationships within a patient's healthcare journey.
An end-to-end bidirectional temporal encoder network (BiteNet) then learns representations of the patient's journeys.
We have evaluated the effectiveness of our methods on two supervised prediction and two unsupervised clustering tasks with a real-world EHR dataset.
arXiv Detail & Related papers (2020-09-24T00:42:36Z) - Trajectories, bifurcations and pseudotime in large clinical datasets:
applications to myocardial infarction and diabetes data [94.37521840642141]
We suggest a semi-supervised methodology for the analysis of large clinical datasets, characterized by mixed data types and missing values.
The methodology is based on application of elastic principal graphs which can address simultaneously the tasks of dimensionality reduction, data visualization, clustering, feature selection and quantifying the geodesic distances (pseudotime) in partially ordered sequences of observations.
arXiv Detail & Related papers (2020-07-07T21:04:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.