libcll: an Extendable Python Toolkit for Complementary-Label Learning
- URL: http://arxiv.org/abs/2411.12276v1
- Date: Tue, 19 Nov 2024 06:56:24 GMT
- Title: libcll: an Extendable Python Toolkit for Complementary-Label Learning
- Authors: Nai-Xuan Ye, Tan-Ha Mai, Hsiu-Hsuan Wang, Wei-I Lin, Hsuan-Tien Lin,
- Abstract summary: Complementary-label learning (CLL) is a weakly supervised learning paradigm for multiclass classification.
textttlibcll is a Python toolkit for CLL research.
textttlibcll provides a universal interface that supports a wide range of generation assumptions.
- Score: 8.335164415521838
- License:
- Abstract: Complementary-label learning (CLL) is a weakly supervised learning paradigm for multiclass classification, where only complementary labels -- indicating classes an instance does not belong to -- are provided to the learning algorithm. Despite CLL's increasing popularity, previous studies highlight two main challenges: (1) inconsistent results arising from varied assumptions on complementary label generation, and (2) high barriers to entry due to the lack of a standardized evaluation platform across datasets and algorithms. To address these challenges, we introduce \texttt{libcll}, an extensible Python toolkit for CLL research. \texttt{libcll} provides a universal interface that supports a wide range of generation assumptions, both synthetic and real-world datasets, and key CLL algorithms. The toolkit is designed to mitigate inconsistencies and streamline the research process, with easy installation, comprehensive usage guides, and quickstart tutorials that facilitate efficient adoption and implementation of CLL techniques. Extensive ablation studies conducted with \texttt{libcll} demonstrate its utility in generating valuable insights to advance future CLL research.
Related papers
- Happy: A Debiased Learning Framework for Continual Generalized Category Discovery [54.54153155039062]
This paper explores the underexplored task of Continual Generalized Category Discovery (C-GCD)
C-GCD aims to incrementally discover new classes from unlabeled data while maintaining the ability to recognize previously learned classes.
We introduce a debiased learning framework, namely Happy, characterized by Hardness-aware prototype sampling and soft entropy regularization.
arXiv Detail & Related papers (2024-10-09T04:18:51Z) - On Learning Latent Models with Multi-Instance Weak Supervision [57.18649648182171]
We consider a weakly supervised learning scenario where the supervision signal is generated by a transition function $sigma$ labels associated with multiple input instances.
Our problem is met in different fields, including latent structural learning and neuro-symbolic integration.
arXiv Detail & Related papers (2023-06-23T22:05:08Z) - Complementary Classifier Induced Partial Label Learning [54.61668156386079]
In partial label learning (PLL), each training sample is associated with a set of candidate labels, among which only one is valid.
In disambiguation, the existing works usually do not fully investigate the effectiveness of the non-candidate label set.
In this paper, we use the non-candidate labels to induce a complementary classifier, which naturally forms an adversarial relationship against the traditional classifier.
arXiv Detail & Related papers (2023-05-17T02:13:23Z) - Enhancing Label Sharing Efficiency in Complementary-Label Learning with
Label Augmentation [92.4959898591397]
We analyze the implicit sharing of complementary labels on nearby instances during training.
We propose a novel technique that enhances the sharing efficiency via complementary-label augmentation.
Our results confirm that complementary-label augmentation can systematically improve empirical performance over state-of-the-art CLL models.
arXiv Detail & Related papers (2023-05-15T04:43:14Z) - CLImage: Human-Annotated Datasets for Complementary-Label Learning [8.335164415521838]
We develop a protocol to collect complementary labels from human annotators.
These datasets represent the very first real-world CLL datasets.
We discover that the biased-nature of human-annotated complementary labels and the difficulty to validate with only complementary labels are outstanding barriers to practical CLL.
arXiv Detail & Related papers (2023-05-15T01:48:53Z) - SequeL: A Continual Learning Library in PyTorch and JAX [50.33956216274694]
SequeL is a library for Continual Learning that supports both PyTorch and JAX frameworks.
It provides a unified interface for a wide range of Continual Learning algorithms, including regularization-based approaches, replay-based approaches, and hybrid approaches.
We release SequeL as an open-source library, enabling researchers and developers to easily experiment and extend the library for their own purposes.
arXiv Detail & Related papers (2023-04-21T10:00:22Z) - Complementary Labels Learning with Augmented Classes [22.460256396941528]
Complementary Labels Learning (CLL) arises in many real-world tasks such as private questions classification and online learning.
We propose a novel problem setting called Complementary Labels Learning with Augmented Classes (CLLAC)
By using unlabeled data, we propose an unbiased estimator of classification risk for CLLAC, which is guaranteed to be provably consistent.
arXiv Detail & Related papers (2022-11-19T13:55:27Z) - PiCO: Contrastive Label Disambiguation for Partial Label Learning [37.91710419258801]
Partial label learning (PLL) is an important problem that allows each training example to be labeled with a coarse candidate set.
In this work, we bridge the gap by addressing two key research challenges in representation learning and label disambiguation.
Our proposed framework PiCO consists of a contrastive learning module along with a novel class prototype-based label disambiguation.
arXiv Detail & Related papers (2022-01-22T07:48:41Z) - Few-Shot Partial-Label Learning [25.609766770479265]
Partial-label learning (PLL) generally focuses on inducing a noise-tolerant multi-class by training on overly-annotated samples.
Existing few-shot learning algorithms assume precise labels of the support set; as such, irrelevant labels may seriously mislead the meta-learner.
In this paper, we introduce an approach called FsPLL (Few-shot image learning)
arXiv Detail & Related papers (2021-06-02T07:03:54Z) - Provably Consistent Partial-Label Learning [120.4734093544867]
Partial-label learning (PLL) is a multi-class classification problem, where each training example is associated with a set of candidate labels.
In this paper, we propose the first generation model of candidate label sets, and develop two novel methods that are guaranteed to be consistent.
Experiments on benchmark and real-world datasets validate the effectiveness of the proposed generation model and two methods.
arXiv Detail & Related papers (2020-07-17T12:19:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.