Large Language Models for Lossless Image Compression: Next-Pixel Prediction in Language Space is All You Need
- URL: http://arxiv.org/abs/2411.12448v2
- Date: Fri, 22 Nov 2024 02:31:13 GMT
- Title: Large Language Models for Lossless Image Compression: Next-Pixel Prediction in Language Space is All You Need
- Authors: Kecheng Chen, Pingping Zhang, Hui Liu, Jie Liu, Yibing Liu, Jiaxin Huang, Shiqi Wang, Hong Yan, Haoliang Li,
- Abstract summary: Language large model (LLM) with unprecedented intelligence is a general-purpose lossless compressor for various data modalities.
We propose P$2$-LLM, a next-pixel prediction-based LLM, which integrates various elaborated insights and methodologies.
Experiments on benchmark datasets demonstrate that P$2$-LLM can beat SOTA classical and learned codecs.
- Score: 53.584140947828004
- License:
- Abstract: We have recently witnessed that ``Intelligence" and `` Compression" are the two sides of the same coin, where the language large model (LLM) with unprecedented intelligence is a general-purpose lossless compressor for various data modalities. This attribute particularly appeals to the lossless image compression community, given the increasing need to compress high-resolution images in the current streaming media era. Consequently, a spontaneous envision emerges: Can the compression performance of the LLM elevate lossless image compression to new heights? However, our findings indicate that the naive application of LLM-based lossless image compressors suffers from a considerable performance gap compared with existing state-of-the-art (SOTA) codecs on common benchmark datasets. In light of this, we are dedicated to fulfilling the unprecedented intelligence (compression) capacity of the LLM for lossless image compression tasks, thereby bridging the gap between theoretical and practical compression performance. Specifically, we propose P$^{2}$-LLM, a next-pixel prediction-based LLM, which integrates various elaborated insights and methodologies, \textit{e.g.,} pixel-level priors, the in-context ability of LLM, and a pixel-level semantic preservation strategy, to enhance the understanding capacity of pixel sequences for better next-pixel predictions. Extensive experiments on benchmark datasets demonstrate that P$^{2}$-LLM can beat SOTA classical and learned codecs.
Related papers
- Learned Image Compression for HE-stained Histopathological Images via Stain Deconvolution [33.69980388844034]
In this paper, we show that the commonly used JPEG algorithm is not best suited for further compression.
We propose Stain Quantized Latent Compression, a novel DL based histopathology data compression approach.
We show that our approach yields superior performance in a classification downstream task, compared to traditional approaches like JPEG.
arXiv Detail & Related papers (2024-06-18T13:47:17Z) - Unifying Generation and Compression: Ultra-low bitrate Image Coding Via
Multi-stage Transformer [35.500720262253054]
This paper introduces a novel Unified Image Generation-Compression (UIGC) paradigm, merging the processes of generation and compression.
A key feature of the UIGC framework is the adoption of vector-quantized (VQ) image models for tokenization.
Experiments demonstrate the superiority of the proposed UIGC framework over existing codecs in perceptual quality and human perception.
arXiv Detail & Related papers (2024-03-06T14:27:02Z) - MISC: Ultra-low Bitrate Image Semantic Compression Driven by Large Multimodal Model [78.4051835615796]
This paper proposes a method called Multimodal Image Semantic Compression.
It consists of an LMM encoder for extracting the semantic information of the image, a map encoder to locate the region corresponding to the semantic, an image encoder generates an extremely compressed bitstream, and a decoder reconstructs the image based on the above information.
It can achieve optimal consistency and perception results while saving perceptual 50%, which has strong potential applications in the next generation of storage and communication.
arXiv Detail & Related papers (2024-02-26T17:11:11Z) - FLLIC: Functionally Lossless Image Compression [16.892815659154053]
We propose a new paradigm of joint denoising and compression called functionally lossless image compression (FLLIC)
FLLIC achieves state-of-the-art performance in joint denoising and compression of noisy images and does so at a lower computational cost.
arXiv Detail & Related papers (2024-01-24T17:44:33Z) - Transferable Learned Image Compression-Resistant Adversarial Perturbations [66.46470251521947]
Adversarial attacks can readily disrupt the image classification system, revealing the vulnerability of DNN-based recognition tasks.
We introduce a new pipeline that targets image classification models that utilize learned image compressors as pre-processing modules.
arXiv Detail & Related papers (2024-01-06T03:03:28Z) - Learned Lossless Compression for JPEG via Frequency-Domain Prediction [50.20577108662153]
We propose a novel framework for learned lossless compression of JPEG images.
To enable learning in the frequency domain, DCT coefficients are partitioned into groups to utilize implicit local redundancy.
An autoencoder-like architecture is designed based on the weight-shared blocks to realize entropy modeling of grouped DCT coefficients.
arXiv Detail & Related papers (2023-03-05T13:15:28Z) - Deep Lossy Plus Residual Coding for Lossless and Near-lossless Image
Compression [85.93207826513192]
We propose a unified and powerful deep lossy plus residual (DLPR) coding framework for both lossless and near-lossless image compression.
We solve the joint lossy and residual compression problem in the approach of VAEs.
In the near-lossless mode, we quantize the original residuals to satisfy a given $ell_infty$ error bound.
arXiv Detail & Related papers (2022-09-11T12:11:56Z) - Learned Lossless Image Compression With Combined Autoregressive Models
And Attention Modules [22.213840578221678]
Lossless image compression is an essential research field in image compression.
Recent learning-based image compression methods achieved impressive performance.
In this paper, we explore the methods widely used in lossy compression and apply them to lossless compression.
arXiv Detail & Related papers (2022-08-30T03:27:05Z) - Learning Scalable $\ell_\infty$-constrained Near-lossless Image
Compression via Joint Lossy Image and Residual Compression [118.89112502350177]
We propose a novel framework for learning $ell_infty$-constrained near-lossless image compression.
We derive the probability model of the quantized residual by quantizing the learned probability model of the original residual.
arXiv Detail & Related papers (2021-03-31T11:53:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.