Bias-Free Sentiment Analysis through Semantic Blinding and Graph Neural Networks
- URL: http://arxiv.org/abs/2411.12493v2
- Date: Sun, 24 Nov 2024 12:12:08 GMT
- Title: Bias-Free Sentiment Analysis through Semantic Blinding and Graph Neural Networks
- Authors: Hubert Plisiecki,
- Abstract summary: The SProp GNN relies exclusively on syntactic structures and word-level emotional cues to predict emotions in text.
By semantically blinding the model to information about specific words, it is robust to biases such as political or gender bias.
The SProp GNN shows performance superior to lexicon-based alternatives on two different prediction tasks, and across two languages.
- Score: 0.0
- License:
- Abstract: This paper introduces the Semantic Propagation Graph Neural Network (SProp GNN), a machine learning sentiment analysis (SA) architecture that relies exclusively on syntactic structures and word-level emotional cues to predict emotions in text. By semantically blinding the model to information about specific words, it is robust to biases such as political or gender bias that have been plaguing previous machine learning-based SA systems. The SProp GNN shows performance superior to lexicon-based alternatives such as VADER and EmoAtlas on two different prediction tasks, and across two languages. Additionally, it approaches the accuracy of transformer-based models while significantly reducing bias in emotion prediction tasks. By offering improved explainability and reducing bias, the SProp GNN bridges the methodological gap between interpretable lexicon approaches and powerful, yet often opaque, deep learning models, offering a robust tool for fair and effective emotion analysis in understanding human behavior through text.
Related papers
- Understanding Before Recommendation: Semantic Aspect-Aware Review Exploitation via Large Language Models [53.337728969143086]
Recommendation systems harness user-item interactions like clicks and reviews to learn their representations.
Previous studies improve recommendation accuracy and interpretability by modeling user preferences across various aspects and intents.
We introduce a chain-based prompting approach to uncover semantic aspect-aware interactions.
arXiv Detail & Related papers (2023-12-26T15:44:09Z) - Analysis of the Evolution of Advanced Transformer-Based Language Models:
Experiments on Opinion Mining [0.5735035463793008]
This paper studies the behaviour of the cutting-edge Transformer-based language models on opinion mining.
Our comparative study shows leads and paves the way for production engineers regarding the approach to focus on.
arXiv Detail & Related papers (2023-08-07T01:10:50Z) - Seeing in Words: Learning to Classify through Language Bottlenecks [59.97827889540685]
Humans can explain their predictions using succinct and intuitive descriptions.
We show that a vision model whose feature representations are text can effectively classify ImageNet images.
arXiv Detail & Related papers (2023-06-29T00:24:42Z) - REDAffectiveLM: Leveraging Affect Enriched Embedding and
Transformer-based Neural Language Model for Readers' Emotion Detection [3.6678641723285446]
We propose a novel approach for Readers' Emotion Detection from short-text documents using a deep learning model called REDAffectiveLM.
We leverage context-specific and affect enriched representations by using a transformer-based pre-trained language model in tandem with affect enriched Bi-LSTM+Attention.
arXiv Detail & Related papers (2023-01-21T19:28:25Z) - Emotion Analysis using Multi-Layered Networks for Graphical
Representation of Tweets [0.10499611180329801]
The paper proposes a novel algorithm that graphically models social media text using multi-layered networks (MLNs) in order to better encode relationships across independent sets of tweets.
State of the art Graph Neural Networks (GNNs) are used to extract information from the Tweet-MLN and make predictions based on the extracted graph features.
Results show that not only does the MLTA predict from a larger set of possible emotions, delivering a more accurate sentiment compared to the standard positive, negative or neutral, it also allows for accurate group-level predictions of Twitter data.
arXiv Detail & Related papers (2022-07-02T20:26:55Z) - Probing Speech Emotion Recognition Transformers for Linguistic Knowledge [7.81884995637243]
We investigate the extent in which linguistic information is exploited during speech emotion recognition fine-tuning.
We synthesise prosodically neutral speech utterances while varying the sentiment of the text.
Valence predictions of the transformer model are very reactive to positive and negative sentiment content, as well as negations, but not to intensifiers or reducers.
arXiv Detail & Related papers (2022-04-01T12:47:45Z) - Incorporating Dynamic Semantics into Pre-Trained Language Model for
Aspect-based Sentiment Analysis [67.41078214475341]
We propose Dynamic Re-weighting BERT (DR-BERT) to learn dynamic aspect-oriented semantics for ABSA.
Specifically, we first take the Stack-BERT layers as a primary encoder to grasp the overall semantic of the sentence.
We then fine-tune it by incorporating a lightweight Dynamic Re-weighting Adapter (DRA)
arXiv Detail & Related papers (2022-03-30T14:48:46Z) - Multimodal Emotion Recognition using Transfer Learning from Speaker
Recognition and BERT-based models [53.31917090073727]
We propose a neural network-based emotion recognition framework that uses a late fusion of transfer-learned and fine-tuned models from speech and text modalities.
We evaluate the effectiveness of our proposed multimodal approach on the interactive emotional dyadic motion capture dataset.
arXiv Detail & Related papers (2022-02-16T00:23:42Z) - Does BERT look at sentiment lexicon? [0.0]
We study the attention weights matrices of the Russian-language RuBERT model.
We fine-tune RuBERT on sentiment text corpora and compare the distributions of attention weights for sentiment and neutral lexicons.
arXiv Detail & Related papers (2021-11-19T08:50:48Z) - Leveraging Pre-trained Language Model for Speech Sentiment Analysis [58.78839114092951]
We explore the use of pre-trained language models to learn sentiment information of written texts for speech sentiment analysis.
We propose a pseudo label-based semi-supervised training strategy using a language model on an end-to-end speech sentiment approach.
arXiv Detail & Related papers (2021-06-11T20:15:21Z) - Infusing Finetuning with Semantic Dependencies [62.37697048781823]
We show that, unlike syntax, semantics is not brought to the surface by today's pretrained models.
We then use convolutional graph encoders to explicitly incorporate semantic parses into task-specific finetuning.
arXiv Detail & Related papers (2020-12-10T01:27:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.