Sentiment analysis of texts from social networks based on machine learning methods for monitoring public sentiment
- URL: http://arxiv.org/abs/2502.17143v1
- Date: Mon, 24 Feb 2025 13:34:35 GMT
- Title: Sentiment analysis of texts from social networks based on machine learning methods for monitoring public sentiment
- Authors: Arsen Tolebay Nurlanuly,
- Abstract summary: A sentiment analysis system powered by machine learning was created in this study to improve real-time social network public opinion monitoring.<n>The system achieved an accuracy of up to 80-85% using transformer models in real-world scenarios.<n>Despite the system's impressive performance, issues with computing overhead, data quality, and domain-specific terminology still exist.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A sentiment analysis system powered by machine learning was created in this study to improve real-time social network public opinion monitoring. For sophisticated sentiment identification, the suggested approach combines cutting-edge transformer-based architectures (DistilBERT, RoBERTa) with traditional machine learning models (Logistic Regression, SVM, Naive Bayes). The system achieved an accuracy of up to 80-85% using transformer models in real-world scenarios after being tested using both deep learning techniques and standard machine learning processes on annotated social media datasets. According to experimental results, deep learning models perform noticeably better than lexicon-based and conventional rule-based classifiers, lowering misclassification rates and enhancing the ability to recognize nuances like sarcasm. According to feature importance analysis, context tokens, sentiment-bearing keywords, and part-of-speech structure are essential for precise categorization. The findings confirm that AI-driven sentiment frameworks can provide a more adaptive and efficient approach to modern sentiment challenges. Despite the system's impressive performance, issues with computing overhead, data quality, and domain-specific terminology still exist. In order to monitor opinions on a broad scale, future research will investigate improving computing performance, extending coverage to various languages, and integrating real-time streaming APIs. The results demonstrate that governments, corporations, and social researchers looking for more in-depth understanding of public mood on digital platforms can find a reliable and adaptable answer in AI-powered sentiment analysis.
Related papers
- Real-Time Sentiment Insights from X Using VADER, DistilBERT, and Web-Scraped Data [0.0]
This paper presents a comprehensive sentiment analysis system tailored for corporate reputation monitoring.
It combines Natural Language Processing (NLP) and machine learning techniques to accurately interpret public opinion in real time.
Our analysis reveals significant disparities in public sentiment across major corporations, with companies like Amazon (81.2) and Samsung (45.8) receiving excellent sentiment scores, while Microsoft (21.7) and Walmart (21.9) exhibit poor sentiment profiles.
arXiv Detail & Related papers (2025-04-21T21:33:55Z) - Eradicating Social Biases in Sentiment Analysis using Semantic Blinding and Semantic Propagation Graph Neural Networks [0.0]
The SProp GNN relies exclusively on syntactic structures and word-level emotional cues to predict emotions in text.<n>By semantically blinding the model to information about specific words, it is robust to social biases such as political or gender bias.<n>The SProp GNN shows performance superior to lexicon-based alternatives on two different prediction tasks, and across two languages.
arXiv Detail & Related papers (2024-11-19T13:23:53Z) - Analysis of the Evolution of Advanced Transformer-Based Language Models:
Experiments on Opinion Mining [0.5735035463793008]
This paper studies the behaviour of the cutting-edge Transformer-based language models on opinion mining.
Our comparative study shows leads and paves the way for production engineers regarding the approach to focus on.
arXiv Detail & Related papers (2023-08-07T01:10:50Z) - On the Robustness of Aspect-based Sentiment Analysis: Rethinking Model,
Data, and Training [109.9218185711916]
Aspect-based sentiment analysis (ABSA) aims at automatically inferring the specific sentiment polarities toward certain aspects of products or services behind social media texts or reviews.
We propose to enhance the ABSA robustness by systematically rethinking the bottlenecks from all possible angles, including model, data, and training.
arXiv Detail & Related papers (2023-04-19T11:07:43Z) - REDAffectiveLM: Leveraging Affect Enriched Embedding and
Transformer-based Neural Language Model for Readers' Emotion Detection [3.6678641723285446]
We propose a novel approach for Readers' Emotion Detection from short-text documents using a deep learning model called REDAffectiveLM.
We leverage context-specific and affect enriched representations by using a transformer-based pre-trained language model in tandem with affect enriched Bi-LSTM+Attention.
arXiv Detail & Related papers (2023-01-21T19:28:25Z) - A Comparative Study of Data Augmentation Techniques for Deep Learning
Based Emotion Recognition [11.928873764689458]
We conduct a comprehensive evaluation of popular deep learning approaches for emotion recognition.
We show that long-range dependencies in the speech signal are critical for emotion recognition.
Speed/rate augmentation offers the most robust performance gain across models.
arXiv Detail & Related papers (2022-11-09T17:27:03Z) - Machine Learning For Classification Of Antithetical Emotional States [1.1602089225841632]
This works analyses the baseline machine learning classifiers' performance on DEAP dataset.
It provides state-of-the-art comparable results leveraging the performance boost due to its deep learning architecture.
arXiv Detail & Related papers (2022-09-06T06:54:33Z) - Panning for gold: Lessons learned from the platform-agnostic automated
detection of political content in textual data [48.7576911714538]
We discuss how these techniques can be used to detect political content across different platforms.
We compare the performance of three groups of detection techniques relying on dictionaries, supervised machine learning, or neural networks.
Our results show the limited impact of preprocessing on model performance, with the best results for less noisy data being achieved by neural network- and machine-learning-based models.
arXiv Detail & Related papers (2022-07-01T15:23:23Z) - Distributed intelligence on the Edge-to-Cloud Continuum: A systematic
literature review [62.997667081978825]
This review aims at providing a comprehensive vision of the main state-of-the-art libraries and frameworks for machine learning and data analytics available today.
The main simulation, emulation, deployment systems, and testbeds for experimental research on the Edge-to-Cloud Continuum available today are also surveyed.
arXiv Detail & Related papers (2022-04-29T08:06:05Z) - Multimodal Emotion Recognition using Transfer Learning from Speaker
Recognition and BERT-based models [53.31917090073727]
We propose a neural network-based emotion recognition framework that uses a late fusion of transfer-learned and fine-tuned models from speech and text modalities.
We evaluate the effectiveness of our proposed multimodal approach on the interactive emotional dyadic motion capture dataset.
arXiv Detail & Related papers (2022-02-16T00:23:42Z) - SOLIS -- The MLOps journey from data acquisition to actionable insights [62.997667081978825]
In this paper we present a unified deployment pipeline and freedom-to-operate approach that supports all requirements while using basic cross-platform tensor framework and script language engines.
This approach however does not supply the needed procedures and pipelines for the actual deployment of machine learning capabilities in real production grade systems.
arXiv Detail & Related papers (2021-12-22T14:45:37Z) - A general framework for scientifically inspired explanations in AI [76.48625630211943]
We instantiate the concept of structure of scientific explanation as the theoretical underpinning for a general framework in which explanations for AI systems can be implemented.
This framework aims to provide the tools to build a "mental-model" of any AI system so that the interaction with the user can provide information on demand and be closer to the nature of human-made explanations.
arXiv Detail & Related papers (2020-03-02T10:32:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.