Eradicating Social Biases in Sentiment Analysis using Semantic Blinding and Semantic Propagation Graph Neural Networks
- URL: http://arxiv.org/abs/2411.12493v3
- Date: Mon, 13 Jan 2025 14:21:21 GMT
- Title: Eradicating Social Biases in Sentiment Analysis using Semantic Blinding and Semantic Propagation Graph Neural Networks
- Authors: Hubert Plisiecki,
- Abstract summary: The SProp GNN relies exclusively on syntactic structures and word-level emotional cues to predict emotions in text.
By semantically blinding the model to information about specific words, it is robust to social biases such as political or gender bias.
The SProp GNN shows performance superior to lexicon-based alternatives on two different prediction tasks, and across two languages.
- Score: 0.0
- License:
- Abstract: This paper introduces the Semantic Propagation Graph Neural Network (SProp GNN), a machine learning sentiment analysis (SA) architecture that relies exclusively on syntactic structures and word-level emotional cues to predict emotions in text. By semantically blinding the model to information about specific words, it is robust to social biases such as political or gender bias that have been plaguing previous machine learning-based SA systems. The SProp GNN shows performance superior to lexicon-based alternatives such as VADER (Valence Aware Dictionary and Sentiment Reasoner) and EmoAtlas on two different prediction tasks, and across two languages. Additionally, it approaches the accuracy of transformer-based models while significantly reducing bias in emotion prediction tasks. By offering improved explainability and reducing bias, the SProp GNN bridges the methodological gap between interpretable lexicon approaches and powerful, yet often opaque, deep learning models, offering a robust tool for fair and effective emotion analysis in understanding human behavior through text.
Related papers
- Understanding Before Recommendation: Semantic Aspect-Aware Review Exploitation via Large Language Models [53.337728969143086]
Recommendation systems harness user-item interactions like clicks and reviews to learn their representations.
Previous studies improve recommendation accuracy and interpretability by modeling user preferences across various aspects and intents.
We introduce a chain-based prompting approach to uncover semantic aspect-aware interactions.
arXiv Detail & Related papers (2023-12-26T15:44:09Z) - Emotion Rendering for Conversational Speech Synthesis with Heterogeneous
Graph-Based Context Modeling [50.99252242917458]
Conversational Speech Synthesis (CSS) aims to accurately express an utterance with the appropriate prosody and emotional inflection within a conversational setting.
To address the issue of data scarcity, we meticulously create emotional labels in terms of category and intensity.
Our model outperforms the baseline models in understanding and rendering emotions.
arXiv Detail & Related papers (2023-12-19T08:47:50Z) - Analysis of the Evolution of Advanced Transformer-Based Language Models:
Experiments on Opinion Mining [0.5735035463793008]
This paper studies the behaviour of the cutting-edge Transformer-based language models on opinion mining.
Our comparative study shows leads and paves the way for production engineers regarding the approach to focus on.
arXiv Detail & Related papers (2023-08-07T01:10:50Z) - REDAffectiveLM: Leveraging Affect Enriched Embedding and
Transformer-based Neural Language Model for Readers' Emotion Detection [3.6678641723285446]
We propose a novel approach for Readers' Emotion Detection from short-text documents using a deep learning model called REDAffectiveLM.
We leverage context-specific and affect enriched representations by using a transformer-based pre-trained language model in tandem with affect enriched Bi-LSTM+Attention.
arXiv Detail & Related papers (2023-01-21T19:28:25Z) - Emotion Analysis using Multi-Layered Networks for Graphical
Representation of Tweets [0.10499611180329801]
The paper proposes a novel algorithm that graphically models social media text using multi-layered networks (MLNs) in order to better encode relationships across independent sets of tweets.
State of the art Graph Neural Networks (GNNs) are used to extract information from the Tweet-MLN and make predictions based on the extracted graph features.
Results show that not only does the MLTA predict from a larger set of possible emotions, delivering a more accurate sentiment compared to the standard positive, negative or neutral, it also allows for accurate group-level predictions of Twitter data.
arXiv Detail & Related papers (2022-07-02T20:26:55Z) - Accurate Emotion Strength Assessment for Seen and Unseen Speech Based on
Data-Driven Deep Learning [70.30713251031052]
We propose a data-driven deep learning model, i.e. StrengthNet, to improve the generalization of emotion strength assessment for seen and unseen speech.
Experiments show that the predicted emotion strength of the proposed StrengthNet is highly correlated with ground truth scores for both seen and unseen speech.
arXiv Detail & Related papers (2022-06-15T01:25:32Z) - Probing Speech Emotion Recognition Transformers for Linguistic Knowledge [7.81884995637243]
We investigate the extent in which linguistic information is exploited during speech emotion recognition fine-tuning.
We synthesise prosodically neutral speech utterances while varying the sentiment of the text.
Valence predictions of the transformer model are very reactive to positive and negative sentiment content, as well as negations, but not to intensifiers or reducers.
arXiv Detail & Related papers (2022-04-01T12:47:45Z) - Incorporating Dynamic Semantics into Pre-Trained Language Model for
Aspect-based Sentiment Analysis [67.41078214475341]
We propose Dynamic Re-weighting BERT (DR-BERT) to learn dynamic aspect-oriented semantics for ABSA.
Specifically, we first take the Stack-BERT layers as a primary encoder to grasp the overall semantic of the sentence.
We then fine-tune it by incorporating a lightweight Dynamic Re-weighting Adapter (DRA)
arXiv Detail & Related papers (2022-03-30T14:48:46Z) - Multimodal Emotion Recognition using Transfer Learning from Speaker
Recognition and BERT-based models [53.31917090073727]
We propose a neural network-based emotion recognition framework that uses a late fusion of transfer-learned and fine-tuned models from speech and text modalities.
We evaluate the effectiveness of our proposed multimodal approach on the interactive emotional dyadic motion capture dataset.
arXiv Detail & Related papers (2022-02-16T00:23:42Z) - Does BERT look at sentiment lexicon? [0.0]
We study the attention weights matrices of the Russian-language RuBERT model.
We fine-tune RuBERT on sentiment text corpora and compare the distributions of attention weights for sentiment and neutral lexicons.
arXiv Detail & Related papers (2021-11-19T08:50:48Z) - Infusing Finetuning with Semantic Dependencies [62.37697048781823]
We show that, unlike syntax, semantics is not brought to the surface by today's pretrained models.
We then use convolutional graph encoders to explicitly incorporate semantic parses into task-specific finetuning.
arXiv Detail & Related papers (2020-12-10T01:27:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.