Graph-Induced Syntactic-Semantic Spaces in Transformer-Based Variational
AutoEncoders
- URL: http://arxiv.org/abs/2311.08579v1
- Date: Tue, 14 Nov 2023 22:47:23 GMT
- Title: Graph-Induced Syntactic-Semantic Spaces in Transformer-Based Variational
AutoEncoders
- Authors: Yingji Zhang, Marco Valentino, Danilo S. Carvalho, Ian Pratt-Hartmann,
Andr\'e Freitas
- Abstract summary: In this paper, we investigate latent space separation methods for structural syntactic injection in Transformer-based VAEs.
Specifically, we explore how syntactic structures can be leveraged in the encoding stage through the integration of graph-based and sequential models.
Our empirical evaluation, carried out on natural language sentences and mathematical expressions, reveals that the proposed end-to-end VAE architecture can result in a better overall organisation of the latent space.
- Score: 5.037881619912574
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The injection of syntactic information in Variational AutoEncoders (VAEs) has
been shown to result in an overall improvement of performances and
generalisation. An effective strategy to achieve such a goal is to separate the
encoding of distributional semantic features and syntactic structures into
heterogeneous latent spaces via multi-task learning or dual encoder
architectures. However, existing works employing such techniques are limited to
LSTM-based VAEs. In this paper, we investigate latent space separation methods
for structural syntactic injection in Transformer-based VAE architectures
(i.e., Optimus). Specifically, we explore how syntactic structures can be
leveraged in the encoding stage through the integration of graph-based and
sequential models, and how multiple, specialised latent representations can be
injected into the decoder's attention mechanism via low-rank operators. Our
empirical evaluation, carried out on natural language sentences and
mathematical expressions, reveals that the proposed end-to-end VAE architecture
can result in a better overall organisation of the latent space, alleviating
the information loss occurring in standard VAE setups, resulting in enhanced
performances on language modelling and downstream generation tasks.
Related papers
- Inducing Systematicity in Transformers by Attending to Structurally
Quantized Embeddings [60.698130703909804]
Transformers generalize to novel compositions of structures and entities after being trained on a complex dataset.
We propose SQ-Transformer that explicitly encourages systematicity in the embeddings and attention layers.
We show that SQ-Transformer achieves stronger compositional generalization than the vanilla Transformer on multiple low-complexity semantic parsing and machine translation datasets.
arXiv Detail & Related papers (2024-02-09T15:53:15Z) - Interpretable Spectral Variational AutoEncoder (ISVAE) for time series
clustering [48.0650332513417]
We introduce a novel model that incorporates an interpretable bottleneck-termed the Filter Bank (FB)-at the outset of a Variational Autoencoder (VAE)
This arrangement compels the VAE to attend on the most informative segments of the input signal.
By deliberately constraining the VAE with this FB, we promote the development of an encoding that is discernible, separable, and of reduced dimensionality.
arXiv Detail & Related papers (2023-10-18T13:06:05Z) - An Integral Projection-based Semantic Autoencoder for Zero-Shot Learning [0.46644955105516456]
Zero-shot Learning (ZSL) classification categorizes or predicts classes (labels) that are not included in the training set (unseen classes)
Recent works proposed different semantic autoencoder (SAE) models where the encoder embeds a visual feature space into the semantic space and the decoder reconstructs the original visual feature space.
We propose an integral projection-based semantic autoencoder (IP-SAE) where an encoder projects a visual feature space vectord with the semantic space into a latent representation space.
arXiv Detail & Related papers (2023-06-26T12:06:20Z) - Interpretable Sentence Representation with Variational Autoencoders and
Attention [0.685316573653194]
We develop methods to enhance the interpretability of recent representation learning techniques in natural language processing (NLP)
We leverage Variational Autoencoders (VAEs) due to their efficiency in relating observations to latent generative factors.
We build two models with inductive bias to separate information in latent representations into understandable concepts without annotated data.
arXiv Detail & Related papers (2023-05-04T13:16:15Z) - Hierarchical Sketch Induction for Paraphrase Generation [79.87892048285819]
We introduce Hierarchical Refinement Quantized Variational Autoencoders (HRQ-VAE), a method for learning decompositions of dense encodings.
We use HRQ-VAE to encode the syntactic form of an input sentence as a path through the hierarchy, allowing us to more easily predict syntactic sketches at test time.
arXiv Detail & Related papers (2022-03-07T15:28:36Z) - Transformer Grammars: Augmenting Transformer Language Models with
Syntactic Inductive Biases at Scale [31.293175512404172]
We introduce Transformer Grammars -- a class of Transformer language models that combine expressive power, scalability, and strong performance of Transformers.
We find that Transformer Grammars outperform various strong baselines on multiple syntax-sensitive language modeling evaluation metrics.
arXiv Detail & Related papers (2022-03-01T17:22:31Z) - Adaptive Discrete Communication Bottlenecks with Dynamic Vector
Quantization [76.68866368409216]
We propose learning to dynamically select discretization tightness conditioned on inputs.
We show that dynamically varying tightness in communication bottlenecks can improve model performance on visual reasoning and reinforcement learning tasks.
arXiv Detail & Related papers (2022-02-02T23:54:26Z) - HSVA: Hierarchical Semantic-Visual Adaptation for Zero-Shot Learning [74.76431541169342]
Zero-shot learning (ZSL) tackles the unseen class recognition problem, transferring semantic knowledge from seen classes to unseen ones.
We propose a novel hierarchical semantic-visual adaptation (HSVA) framework to align semantic and visual domains.
Experiments on four benchmark datasets demonstrate HSVA achieves superior performance on both conventional and generalized ZSL.
arXiv Detail & Related papers (2021-09-30T14:27:50Z) - Improve Variational Autoencoder for Text Generationwith Discrete Latent
Bottleneck [52.08901549360262]
Variational autoencoders (VAEs) are essential tools in end-to-end representation learning.
VAEs tend to ignore latent variables with a strong auto-regressive decoder.
We propose a principled approach to enforce an implicit latent feature matching in a more compact latent space.
arXiv Detail & Related papers (2020-04-22T14:41:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.